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Abstract

We examine the emergent dynamics of granular and cognitive complex systems. We use

a hybrid Monte Carlo algorithm to simulate the shaking of granular spheres at different

vibrational amplitudes. Several spontaneous crystallizing transitions are typically ob-

served, leading to end states which can be fully or partially ordered, depending on the

shaking amplitude, which we investigate using metrics of global and local orders. The

crystallization is incomplete at low amplitudes, at least for our times of observation.

For amplitude ranges where crystallization is complete, there is typically a competi-

tion between hexagonal close packed (hcp) and face-centered cubic (fcc) ordering. It is

seen that fcc ordering typically predominates; in fact for an optimal range of amplitudes,

spontaneous crystallization into a pure fcc state is observed. An interesting feature is the

breakdown of global order when there is juxtaposition of fully developed hcp and fcc or-

der locally: we suggest that this is due to the interfaces between the different domains of

order, which plays the same role as dislocations. We perform the Delaunay tessellations

of granular packings at various packing densities. The volumes of Delaunay simplices

follow a gamma distribution; the volume fluctuations and entropy have shown drastic

change at packing densities 0.62, 0.64 and 0.68. The minima’s of length measures and

distributions of dihedral angle of simplices provide basis for distinguishing regularity of

simplices. Human eye movements involve in semantic search subjected to visual and au-

ral inputs in a cognitive task. The probability distributions of saccades and fixations are

obtained and analyzed. Scale-invariance is observed in the saccadic distributions, while

the fixation distributions reveal the presence of a characteristic time scale for literate

participants. A detailed analysis of Euclidean distance time series suggests that saccadic

eye motions are an example of Levy, rather than Brownian, dynamics. We calculate the

log-likelihood and Akaike weights to select the best fitting model for the saccade times.

Power-law distribution has higher log-likelihood and Akaike weights against other prob-

ability models. We perform simulation of two-dimensional Levy random walks. The

results of this model suggest the superdiffusive dynamics of Levy walker, which further

find analogous to that of saccadic motion.
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Chapter 1

Introduction

1.1 Complex Systems

Most of the real systems in nature are complex. The interactions between large number

of constituents introduce complexity to the system. The complexity may emerge in

the form of simple or complex structures and patterns over different spatio-temporal

scale. Examples of complexity can be found in a range of systems such as brain and

cognition [1], foraging [2], complex materials [3], share market [5], complex network [4],

chaos and turbulence [6], and so on. The emergent behavior is categorized into two

groups: emergent simplicity and emergent complexity [7]. An emergent simplicity is

observed when complex elements behave, as a whole, in a simple way [7]. For example,

neuron, a complex cell in brain, makes simple view of real world. In particular, the

collective behavior of neurons is strongly responsible for the mental processes [8]. On

the other hand, an emergent complexity arises when simple elements interact, as a

whole, in complex way [7]. For instance, granular materials such as beads, discs, spheres

and powders exhibit complex static and dynamic properties [9]. These simple elements

collectively form complex structures and patterns subjected to external perturbations

[9]. Altogether, it is essential to understand not only the behavior of constituents but

also their collective behavior as a whole.

Many experimental, theoretical and computational protocols explain the statics and dy-

namics of complex systems [10]. Specifically, the emergent behavior can be described

using linear or nonlinear differential and integral equations, and computer algorithms

1
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[11]. In addition, stochastic models discern the randomness of an emergent behavior [12].

Modern statistical methods construct probability models for the data and illustrate the

best approximating model [13]. For example, the application of stochastic and informa-

tion theoretic methods to time series data of linguistic study remarkably improve the

inferences [14]. In case of granular materials, the computational techniques fill the gap

between experiments and analytical frameworks. In particular, Molecular dynamics [15]

and Monte Carlo [16] algorithms are used to examine the complexity of granular pack-

ings and their dynamics. Also, in the first place, the random packings of monodisperse,

hard spheres with different densities are constructed and then, their dynamical aspects

are examined. Nevertheless, a challenging task is to develop the theoretical framework

for granular and cognitive complex systems.

1.1.1 Granular Systems

Granular materials have number of distinct characteristics. They exhibit behavior that

is neither solid-like nor liquid-like. Moreover, the complexity in these materials emerges

because of nonlinear and hysteric behavior of grains [16]. Besides, they show a unique

property of dilatancy which is the ability to sustain different degrees of packings [17].

The inter-grain forces are repulsive; dissipation occurs due to static friction and inelastic

collisions [18]. Granular media are athermal and noncohesive systems [18]. The ordinary

temperature plays no role in granular systems so that each metastable state will exist

indefinitely [18]. External mechanical perturbations such as shaking, vibration, stirring

and shear alter the state of granular materials [18]. Therefore, the external forces play

an important role in understanding the complex dynamics of granular grains.

The computational methods model either sequential [19, 20] or nonsequential [21, 22]

processes of granular material. The sequential algorithms follow predefined rules of

deposition. On the contrary, the nonsequential algorithms incorporate the cooperative

rearrangement of particles. Further, the sequential algorithms neglect the stability of

particles whereas nonsequential algorithms construct the stability of particles which in

turn establish stable cluster. Besides, computer algorithms consider either hard sphere

or soft sphere interaction between granular grains. The hard sphere models are used

for the investigations of properties of thermal systems such as liquids [23] and colloids

[24]. However, in an athermal system, lower and upper random packing limits have

been set up for loose and close packings of spheres, corresponding to densities of 0.55
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[25] and 0.64 [26] respectively. Significantly, these random packings illustrate the static

properties of spheres. Nevertheless, both the random packing limits are ill-defined [27]

and densities above 0.64 are achieved in shaken spheres [28]. At the other end of the

spectrum, there is a conjecture by Kepler that the maximum density of sphere packings

is that of fcc structures, corresponding to a value of 0.74 [29].

Granular systems show emergent behavior subjected to external perturbations. For

instance, the sheared granular spheres [30] exhibit phase transitions where crystalline

structures evolve spontaneously from disordered structures. In particular, the emergence

of fcc and hcp structures is seen in sheared spheres [30] and horizontally shaken beads

[31]. Likewise, the evolution of crystalline transitions are found similar to those of

sheared colloids [32]. Next, the cluster analysis of sheared spheres [30] reveals that fcc

structures are preferable than hcp structures. Altogether, it is important to address

some issues: the emergence of crystalline structures subjected to shear or shaking, and

functional relationship between driving forces and displacements of particles.

Our aim is to investigate the spontaneous crystallization of granular spheres. Impor-

tantly, we focus our attention on the role of shaking in the development of crystalline

structures at different stages. To achieve the goal, we have performed computer sim-

ulation of hard spheres subjected to shaking. We have used Monte Carlo algorithms

[21, 33] for the packing and shaking of spheres. In particular, the packing algorithm

builds sequential deposition of monodisperse, hard spheres. The shaking algorithm in-

cludes nonsequential step which gives a clear understanding of the cooperative move-

ments of spheres. It also establishes the stability of spheres in an aggregate. To assess

the development at local as well as global level, it is important to use characterization

methods that distinguish different crystalline phases. We have characterized the crys-

talline structures using the metrical and geometrical methods. Our analysis divided into

two categories. First, we have analyzed the packings using metrical order parameters

such as radial distribution function and bond orientational order parameters. Secondly,

we have used Delaunay tessellations to explore the geometrical aspects of sphere pack-

ings at various densities. Further, we have calculated the volumes of Delaunay simplices,

volume fluctuations and configurational entropies. At last, we are able to compute the

angular and length measures of simplices at different densities.
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1.1.2 Cognitive Systems

Cognitive science explores mental processes such as perception, thinking, knowledge

and memory, attention, and feelings [34]. Usually, these processes are broadly classified

and studied in psychology and physiology. Psychologists [35, 36, 37] study the human

behavior during cognitive tasks. In particular, the linguistic psychologists [38, 39] study

the language mediated patterns that describe the attentional behavior of people during

linguistic tasks. On the other hand, neural or physiological cognition [8] mainly focuses

on the brain and its activities.

The diversions of eyes on different locations of an image disclose inner cognitive processes

[40, 41]. Attention is the key to these diversions. In particular, visual attention is used

to focus mental capabilities on the stimuli so that the brain can process the information

of area of interest. This addresses the issues of attraction of attention towards image

features, the role of visual stimuli for making voluntary eye movements, and the link

between attention and eye movements [40, 41]. The role of eye movements is crucial to

understand the emergent human behavior during visual search. In general, eye move-

ments are broadly classified into three categories: fixation, saccade and smooth pursuits

[42]. In fact, saccades and fixations correspond to states of attention in a dynamical

system, so that a realistic quantitative approach would examine each one, as well as

how each one affects the other [43]. Many different approaches have been proposed

to understand causes and clues of diversions of eyes [43]. For example, visual world

paradigm [38], an experimental method, examines the emergence of human behavior in

a simple language mediated task. Specifically, this paradigm deals with the interaction

of cognitive systems to linguistic inputs. In experiments based on this paradigm, the

eye movements of the participants time-locked between speech signals [38, 39]. These

sequences of time locking, in response to aural inputs with visual analogue, show the

emergent behavior of eyes. However, the characteristics of the spatio-temporal dynamics

of eye movements have not been dealt in current research.

Our aim is to study the spatio-temporal dynamics of eye movements during simple lan-

guage comprehension tasks. We examine the effect of literacy on our observations, since

literacy may have a direct influence on attentional mechanisms affecting eye movements

[44]. We underline that no previous study has measured eye movements in literate and
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illiterate participants, with a view to examining their attentional responses. For our pur-

poses, since we are interested in quantifying frequencies of saccades and fixations during

a language mediated visual search, we assume that fixations indicate zones of attentional

stability, while saccades involve random, relatively inattentive, search. Participants are

under no instructional control, and carefully unaware that they are performing a set

task. Another issue involves the selection of a comprehensive sample, with varying lit-

eracy levels; for this, one needs to construct a task which relies as little as possible on

formal education.

We have divided the study into two categories: empirical analysis of the experimental

data of eye movements and a numerical model for visual search. First, we have per-

formed the temporal analysis of both saccade and fixation. To support the validity of

probability model for saccades, the likelihood and information theoretical techniques

have been applied to saccade times. Further, we have constructed the time series of

Euclidean distances of saccades and then applied the scaling methods of standard devi-

ation and diffusion entropy to the time series. The aim of these analyses is to identify

the nature of spatial diffusion of saccades. Secondly, we have carried out simulation

of two-dimensional Levy random walk. This numerical random walk model has been

chosen for the comparison between the diffusive properties of both Levy walks and the

motion of saccades.

1.2 Outline of the Thesis

We provide the basics of theoretical methods or empirical analysis at the beginning of

each chapter.

Chapter 2 gives the review on the statics and dynamics of granular material and the

human cognition.

In chapter 3, we present the first part of thesis, study of the spontaneous crystallization

of granular spheres. The sections 3.1 and 3.2 provide some details of random packings

and the role of external perturbations. The method of simulation, hybrid Monte Carlo

algorithm is explained in section 3.3. In section 3.4, transient regimes of spheres for

nine shaking amplitudes are shown. Some spontaneous crystalline transitions of spheres,

subjected to nine shaking amplitudes, are explained in section 3.5. It is necessary to

characterize the spatial orders of sphere packings at various densities so that section 3.6.1
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focuses on the global order analysis of packings. In section 3.6.2., we have provided

a detailed analysis of development of fcc and hcp sphere-clusters at different packing

densities. Section 3.7 concludes the study of spontaneous crystallization of granular

spheres.

Delaunay tessellations of granular packings are presented in chapter 4. In section 4.1, we

give the basics of Voronoi-Delaunay tessellations and the statistical mechanical approach

to volumes of Delaunay simplices. Section 4.2 starts with Delaunay tessellations of sphere

packings. The subsection 4.2.1 contains statistical analysis of volumes of tetrahedra. The

percentages quasiregular tetrahedra at various packing densities are shown in subsection

4.2.2. Section 4.2.3 explains the findings of angular and length measures of Delaunay

tetrahedra. In section 4.3, we conclude our findings on Delaunay tessellation of packings.

Chapter 5 focuses on the second part of thesis, human cognition through eye move-

ments. The visual attention mechanism, types and detection of eye movements, and the

experimental paradigm are explained in section 5.1. Section 5.2 provides an overview

of theoretical method of analyses. We present temporal analysis of saccade and fixation

eye movements in section 5.3.2. Section 5.3.3 gives the details of anomalous diffusion in

eye movements. We provide the conclusions on eye movement study in section 5.4.

The model selection for saccade times and the outcomes of numerical Levy walk model

are explained in chapter 6. Section 6.1 entirely addresses the basics of statistics of

model selection based on likelihood and information theory. The analytical description

of likelihood functions for four candidate probability models and Akaike information

criteria are presented in section 6.1.2. In section 6.2, we have shown the results of

maximum likelihood estimation and Akaike information of four candidate models. The

results of simulation of the two-dimensional Levy random walks are shown in section

6.3. Section 6.4 gives the conclusions.

Finally, in chapter 7, we summarize our results on studies of spontaneous crystallization

of spheres and eye movements, and provide future perspectives.
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Chapter 2

Review of the Literature

Statics and dynamics of complex systems have been studied in interdisciplinary sciences

[1, 2]. The dynamics of individual constituents and their collective behavior exhibit

complex spatio-temporal structures. The emergent behavior of granular and cognitive

systems depends on the applied protocols.

2.1 Statics and Dynamics of Granular Materials

The packings of different geometrical objects reveals their static properties. Specifically,

the study of hard sphere packings in athermal systems received a boost when this became

the centre-point of models of dry granular media [3, 4, 5]. However, the emergence of

collective structures and dynamics of hard spheres were mostly ignored [6]. Bernal,

[7, 8], Mason [9], and Scott [10, 11] provided a basis for random packing experiments of

hard spheres. In these experiments, the monosize hard spheres packed to a compact and

disordered configuration of density 0.64. They also examined the effect of friction on the

properties of packings and also computed the coordination numbers of spheres. Onoda

and Liniger [12] established the random loose packing of uniform spheres at the limit of

zero gravitational force. This random configuration of spheres was stable, corresponding

to packing density of 0.55 [12]. The computer simulations of hard spheres [13, 14, 15,

16, 17, 18] reproduced these two empirical limits of random packings. However, no

mathematical framework has been established for random packing limits [19].

The methods of construction and the nature of randomness determine the characteristics

of packings. The value of packing density and particle’s coordination number depend

10
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on the history of construction [6]. The influential factors such as history dependence,

friction and stability between the particles, have been incorporated in computational

models [20]. These models are broadly classified into two categories: nonsequential

[21, 22, 23] and sequential [24, 25]. Moreover, in reality, shaking, pouring, tapping,

and stirring processes reflect the collective restructuring of particles. In these processes,

particles interact with each other so that their trajectories are nonsequential [21, 22].

In nonsequential algorithms [21, 23], particles cooperatively reorganise at the same time

of their deposition. Therefore, the nonsequential algorithms present the realistic view of

granular dynamics, in contrast to sequential algorithms [24, 25]. Computational studies

[18] expanded the sequential and perturbative ordered configurations to nonsequential

organizations. Mehta and Barker [21] developed a hybrid algorithm which comprises a

hard sphere Monte Carlo method and a nonsequential step. Importantly, inclusion of

nonsequential step assigned stability to particle in a cluster. Their algorithm [21, 22]

successfully generated stable sphere packings with densities in the range of 0.55 to 0.60

and the mean coordination number in the range of 4.5 to 6. A nonsequential algorithm

of Nolan and Kavanagh [23], based on gas compression method, constructed random

packings of densities between 0.509 and 0.638. Also, Nolan and Kavanagh computed

the mean coordination numbers of particles between 4.4 and 5.9 [23]. Soppe [26] did not

consider the stability of particle in his Monte Carlo scheme. His algorithm generated

a packing of spheres with density 0.60 [26]. Jodrey and Tory [27] included isotropic

and deterministic compression methods in their nonsequential algorithm. Their packing

contained non-contacting particles which further cause increased density with decreasing

compression at final steps. Further, their algorithm generated a packing of density 0.64

[27].

Sequential algorithms consider on site search and deposition of particle. Eden [24] and

Bennett [25] gave sequential models where particle’s sites were continuously updated and

chosen according to predefined rules. Specifically, in former model, particle occupied a

site with equal a priori probability, whereas latter model constructed packings in central

force fields. In sequential algorithms, particles are noninteracting and follow ballistic

trajectories until a potential minimum is achieved [24, 25]. Eden and Bennett models

packed particles to densities 0.57 and 0.60 respectively [24, 25]. In addition, these

deposition models established packings where the mean coordination number of particle



Chapter 2. Review of the Literature 12

was 6 in three dimensions [24, 25]. No collective reorganisations and history dependence

were considered in sequential algorithms.

The bulk properties of granular materials gradually change due to the effect of ex-

ternal driving forces. Knight et al., [28, 29, 30] carried out experiments which were

focused on the evolution of packing density and the relaxation dynamics of spherical

glass beads, subjected to vibration. They found that the density relaxation follows

inverse-logarithmic law [28]. They also suggested multiple time scales for the density

relaxation of beads. However, Mehta and Barker [21, 22] proposed two time scales: one

for single particle relaxation and other for the cluster relaxation. In this model, the time

dependence of packing density was fitted to sum of two exponential terms [21, 22]. In

other compaction experiments [31], the density relaxation showed a stretched exponen-

tial behavior, in contrast to inverse-logarithmic law.

Recent experiments [32, 33, 34, 35] have examined the crystalline transitions of granular

particles subjected to external perturbations. In particular, spontaneous transitions to

crystallinity have been observed in horizontally shaken glass beads [31] and sheared

granular spheres [35]. Kudroli et al., [35] have studied the development of ordered

phases of frictional glass beads by imposing shear. They [35] have also studied the

non-spherical shapes and orientations of nucleating clusters. In addition, they calculate

the correlation length and the fractions of fcc and hcp clusters. Computer simulations

[36] of shaken spheres were first reported crystalline transitions for an optimal range of

shaking amplitudes. Also, other simulation studies [37, 38] have shown the developments

of different crystalline phases. It has been suggested that fcc structure dominates over

hcp structure in sheared colloids [39, 40, 41]. However, none of the study determines

the functional relationship between the driving force and packing density of crystalline

states.

Various methods are found useful for the characterisation of the structural properties

of liquids [42] and glasses [43, 44]. The bond orientational correlation functions [43]

and the traditional methods of translational orders [45] identified the spatial ordering

in the system. A radial distribution function is the simplest method to distinguish

order from disorder [45]. Steinhardt et al., [43] developed the bond orientational order

parameters for the detection of ordered structures. These order parameters were used

for the local and global analysis of thermal [43, 44] and athermal [46] systems. Torquato
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et al., [47] computed the numerical values of bond orientational order parameters for

different crystalline structures. Klumov et al., [48] applied bond order metrics to hard

sphere packings that were generated using Jodrey-Tory [49] and Lubashevsky-Stillinger

[50] algorithms.

Anikeenko et al., [51, 52] performed Voronoi-Delaunay tessellations of granular packings

for the geometrical analysis. Their method established different length measures of

regular and quasiregular Delaunay simplices. The minima’s of length measure’s have

used for the separation of fcc from hcp structures [53]. Aste et al., [54] have established a

statistical mechanical approach for sphere packings via Voronoi-Delaunay tessellations.

In addition, they have studied volume distributions of Delaunay simplices and their

fluctuations, and configurational entropies [55]. This approach is based on Edwards’s

measure [56, 57] of granular matter. Also, the Voronoi-Delaunay techniques have been

applied to jammed [58, 59], and crystallised granular packings [60].

2.2 The Human Cognition

Our eyes confront with an overwhelming amount of information about the visual world.

Eyes capture selective information of an image or an object and ignore other [61]. This

may disclose the attentional behavior of a person. The visual attention and perception

are inner cognitive processes [62, 63, 64]. Moreover, the visual attention classified into

three groups: spatial [65], feature-based [66] and object-based [67]. The spatial attention

is divided into two types: overt or covert. In overt case, an attention deploy on relevant

location accompanying with eye movements [65]. On the other hand, covert attention

focuses on more than one location simultaneously, without coinciding with the move-

ments of eyes [65]. However, the link between attention and eye movements has long

been debated [68, 69, 70, 71]. Many attempts [72, 73] have been made to understand

the missing link between attention and eye movements. Neurological studies [74, 75]

have claimed that various areas of brain involve in visual attention and information pro-

cessing. Behavioral studies [76, 77, 78] have shown that the attention deploy over large

range of scene or image and also during reading.

The visual mechanisms are broadly classified into saccade, fixation and smooth pursuit

[79, 80]. S. Martinez-Conde et al. [81] have given a review on the studies of fixational eye

movements and the visual perception encoded by brain. Itti and Koch [82] have provided
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a detailed procedure for the computational modelling of eye movements and attentional

mechanisms. Various algorithms, based on velocity [83, 84], dispersion [85], and area of

interest [86], are developed and used in eye tracking experiments. Specifically, velocity

based algorithms consider thresholds to detect saccade and fixation. Various studies

[87, 88, 89, 90] have provided insights into the cognitive dynamics through saccade and

fixational eye movements. The change of eye gaze positions in response to linguistic in-

puts are examined in language mediated visual search [91, 92]. Saccades and fixations,

during this natural search, are influenced by both the emerging visual and linguistic rep-

resentations, and their interactions [91]. The experimental paradigm [92] of eye tracking

contains a simple display of objects and neutral aural inputs. The eye movements time-

lock between the linguistic inputs during cognitive tasks [92]. Further, linguistic studies

[93, 94] have revealed that effect of formal literacy influences the behavior of a person

during a simple look and listen task. Huetting and Mishra et al [95]., have extensively

performed linguistic studies on high and low literate peoples. They have examined the

influence of phonological and semantic competitors on identifying the target words [95].

This study suggests that the low literates use only phonological information whereas

high literates use both semantic and phonological informations [95].

Humans continuously move their eyes during visual search. The emergent behavior

of human cognition through eyes evolves over different spatio-temporal scales [96, 97].

Linguistic studies [98, 99, 100, 101] have shown that the changeability of human be-

havior during cognitive task understands in terms of diffusion phenomena. Scafetta et

al., [102] have developed a scaling method which transforms time series into diffusion

processes. Their scaling method, diffusion entropy analysis (DEA), compute entropies

of normal and Levy diffusion processes [102]. In general, scaling methods and exponents

characterize the diffusive properties of time series [103]. The finite variance methods,

standard deviation [104] and detrended fluctuation analyses (DFA) [105] detect the scal-

ing functions of long range correlations of DNA sequences [106]. Stefan et al., [107] have

applied both SDA and DEA on the time series of eye movements. They observe that

eye movements exhibit Levy like superdiffusion. Further, they have used likelihood

and information theoretical methods in support of Levy’s power-law distribution. In

contrast, Shelhamer [108] claimed the fractional Brownian motions of the latencies of

saccades. The anomalous diffusive behavior of eye movements are found similar to those

described by Vishwanathan et al. In case of animal foraging dynamics, Vishwanathan
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et al., [109, 110] have showed the scale free behavior of step lengths. This scale free

behavior also exhibits power-law of Levy like distribution [109, 110]. Moreover, Kello et

al., [111] have given a comprehensive review on various forms of scaling laws that are

observed in cognitive science. Prokett et al., [112] have observed the scale invariance

in dynamics of spontaneous behaviors of animals and humans. Reynolds [113] has sug-

gested that fractional cases of Brownian and Levy motions are also useful in random

search scenarios of animal foraging. The candidate probability models of animal foraging

data further revised using likelihood, Akaike, and Bayesian information methods [114].

These modern statistical methods select the best approximate model for the empirical

data [115, 116, 117].

Gaussian processes have finite mean and variance, whereas Levy processes do not [118].

Levy flights and random walks are the efficient ways of modelling anomalous diffusion

[119, 120, 121, 122, 123]. The Levy and Brownian diffusive dynamics were studied in

finance [124] and in fractal processes [125, 126]. Mandelbrot [127] further generalised

the ordinary diffusion to fractional cases. In case of visual research, Mergenthaler and

Engbert [128] have demonstrated the delay random walk model for the fixational eye

movements. They have investigated transitions of fixational eye movements from per-

sistent to anti-persistent behavior.
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Chapter 3

Spontaneous Crystallization of

Granular Spheres

In this chapter, we mention the basics of random packings and the role of external

driving forces. The remaining sections are devoted to hybrid Monte Carlo simulation

and characterization of spontaneous transitions of granular spheres.

3.1 Basics of Random Packings

Random packing is a large collection of solid objects of regular and/or irregular geo-

metrical shapes in a given spatial dimensions. Moreover, how much volume or fraction

of a container occupied by particles, is a key problem in mathematics [1] and physics

[2]. The properties of random close packings depend on sample composition, method of

preparation and the nature of contact between the particles [3]. Besides, the shapes and

texture of particles strongly influences statics and dynamics of packings. Furthermore,

static friction and the inelastic collisions between particles alter the bulk properties of

the packings [2]. Packing fraction or density and mean coordination number of par-

ticles, the key parameters, are used for the description of distinctive features of disc

[4, 5], sphere [6], rod [7, 8] and ellipsoid [9] packings. Some important terms [10, 11, 12]

relevant to granular packings are defined as follows.

• Packing fraction or density φ:

Packing fraction is the ratio of volume of the total number of particles to the

23
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volume of the box occupied by the particles. Let us consider, vp be the volume of

a particle and Vocp is the volume occupied by M particles in a container, then the

simplest formula for packing density is φ ≡ Mvp
Vocp

.

• Mean coordination number z: Mean coordination number of a particle is the

number of particles in touch with it.

• Compaction: The compaction is defined as the change in packing fraction or

density with respect to external mechanical perturbations.

Random packings of particles attain stable mechanical equilibrium. The number and

nature of contacts, and interaction between particles affect the stability of packings

[13, 14]. The stability of particles is a major concern in computational models of packings

[3]. Other important parameters such as the angular separation and friction between

particles are also modelled in cluster algorithms [15, 16]. These algorithms consider

the stability of spheres and their clusters [17, 18]. To attain stability, each sphere in

random packing needs at least four or at most twelve other spheres in contact [6]. It

has been argued that sphere packings are either isostatic [19] or hypostatic [20, 21]. In

former case, the mean coordination number z of particles is equal to twice the number

of degrees of freedom. On the other hand, in latter case, z is less than number of degrees

of freedom. In a stable mechanical equilibrium, the total force and the torque on each

particle should vanish. Experimental study [22] has shown that in marginally rigid

state, for mechanical balance, the mean coordination number reach above the critical

value zc. For convex shape grains: zc = 3 and 4 in two and three dimension respectively

[22, 23]. This study also suggested that zc corresponds to 6 and 12 for random close

sphere packings [22, 23].

Random packing of spheres can be obtained by dropping them randomly in a container.

If the spheres put in the container very gently then the density or the volume of the

container occupied by the spheres is called the random loose packing density φrlp [24].

Afterwords, if the spheres in the container are tapped so that they come as close as

possible, but still persist disorder, then the density φrcp ∼ 0.64 corresponds to random

close packing [25, 26]. The random loose packing depends on the gravitational force and

the density of spheres [24]. Onoda and Liniger [24] gave the value of loose packing density

φrlp for glass spheres. The glass spheres with specific gravity of 2.94 were immersed

in a mixture of d-iodomethane and toluene. The spheres were allowed to settle in
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liquid and then φrlp = 0.55 was determined for the limit g (acceleration)→ 0 [24].

Moreover, experiments [25, 26] and simulations [27, 28, 29] have suggested that the

random packings at density 0.64 comprise noncrystalline structures.

3.2 Role of External Perturbation in Granular Compaction

Granular materials are athermal systems so that the traditional Gibbs thermal ensemble

method is not useful for the sampling [3, 13]. The dynamics of particles subjected to

external driving forces is intricate. A major source of difficulty is to understand the func-

tional relationship between the external driving force and the displacement of particles.

Despite the limitations, computer simulation of shaken spheres [17, 18] explained the

stability and relaxation dynamics of a single sphere and sphere- clusters. This computer

simulation algorithm reinforces the role of driving force, complex trajectories of spheres

and the stability of packings. Furthermore, linear and nonlinear trajectories of spheres

under shaking and tapping were examined in other simulations [15, 16, 17, 18, 28].

A series of experiments [30, 31, 32] were carried out on the compaction of monodisperse

glass beads by tapping them vertically. In these experiments, the glass beads were

confined to a long tube and then tapped. The initial state was a loose packing of

density 0.58. The time dependence of density was fitted to inverse-logarithmic law [30],

ρ(t) = ρf −
∆ρ∞

1 +B ln
[
1 + t

τ

] , (3.1)

where τ is characteristic time and B is fitting parameter. These parameters are constant

and depend only on tapping strength [30]. Importantly, these experiments suggested

that two or more timescales may involve in density relaxation. On the contrary, in

other compaction experiment [33], the density relaxation of glass beads, under vertical

tapping, was fitted to stretched exponential of Kohlrausch-Williams-Watts law,

ρ(t) = ρ∞ − e−(t/τ)ε(ρ∞ − ρ0), (3.2)

where ρ0 and ρ∞ are steady state values of initial and final densities respectively. The τ

and ε are relaxation time and stretching parameter of the exponential fit respectively.

Random packings can undergo spontaneous transitions from disordered to crystalline

states when subjected to given energy inputs under specific protocols [3]. In these cases,
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the density increased above the random close packing limit φrcp. The crystalline transi-

tions are observed in sheared [34] and horizontally shaken [35] beads. The crystallinity of

granular spheres can occur via fcc or hcp structures, or indeed a mixture of the two [34].

In addition, the cluster analysis of granular spheres [34] focused on the developments

of hcp and fcc structures at each step of shear [34] and vibration [36]. The competitive

behaviour between fcc and hcp was observed during the later stages of sheared colloids

[37, 38, 39, 40].

3.3 Hybrid Monte Carlo Simulation

In this section, we describe method of simulation and the details of our simulation.

3.3.1 Packing and Shaking Algorithms

We use a three-dimensional hybrid Monte Carlo simulation to investigate the crystalliza-

tion of granular spheres [17, 18]. Our computational method consists two steps: packing

and shaking of spheres. First, we are able to pack spheres randomly using sequential

procedure [41]. Secondly, the configurations of spheres are gradually shaken. In packing

step, hard and frictionless monodisperse spheres are slowly deposited inside the box.

The gravitational force acts on the sphere during deposition and therefore generates an

irreversible ballistic sphere-cluster aggregate [41]. In this aggregate, spheres reduce their

potential energies along a trajectory. These trajectories are computed by considering se-

ries of linear free fall and circular rotations [41]. This sequential process finally produces

packing of density 0.58.

The shaking cycle contains three stages: vertical expansion, stochastic rearrangement

and cooperative recompression. Moreover, the shaking cycle is a hybridization of low

temperature Monte Carlo and a nonsequential (cooperative) step [17, 18]. Further, the

shaking amplitude is parameterized in terms of sphere diameters. For example, A = 0.10

means that the shaken spheres are free to move longitudinally on an average 0.10 sphere

diameter.

In the first stage, the sphere assembly is displaced vertically in proportion with the

shaking amplitude A. This vertical expansion assigns new heights to spheres, i.e., the

height of the sphere i changes from zi to z
′
i = (1 + A)zi, and accompanied by random

lateral displacements, x
′

= x+ ξx and y
′

= y+ ξy. Here, ξx and ξy are Gaussian random
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variables with zero mean and the variance proportional to A2. Importantly, the vertical

expansion introduces a free volume of size A between the spheres. Spheres utilize the free

volume in their cooperative rearrangements during second and third stages of shaking

cycle. The packing density during the expansion stage of nth shake cycle drops from

φn−1 to φn−1/(1 +A).

In the second stage, the whole packing is compressed by a series of stochastic arrange-

ments of the individual spheres. A low temperature hard sphere Monte Carlo algorithm

is used for random selection and displacement of individual spheres. Spheres are ran-

domly selected and displaced according to the transformation, ri = ri + e ∗ d. The

components ex, ey, ez of a random vector e lies in the interval [−1, 1]. The Monte Carlo

step length d defines the neighbourhood for spheres. All successful moves reduce the

overall potential energy of the system.

The final stage of the shaking cycle is a cooperative step. In this stage, spheres are chosen

with increasing height and, in turn are allowed to roll and fall into stable positions. In

this part of the shake cycle, spheres may roll over, and rest on, any other sphere in the

assembly. This includes those spheres which are still to be stabilized and which may, in

turn, undergo further rolls and falls. This is a fully cooperative process, which is crucial

for realistic simulations of granular media.

3.3.2 Details of Simulation

We use monodisperse, rigid, incompressible hard spheres of unit diameter. Our sequen-

tial algorithm generates a stable packing of spheres with density 0.58. The simulation cell

is an open-topped box of size 10×10×10, and contains 1273 spheres in total. The periodic

boundary conditions are applied in the lateral directions. Spheres are shaken at nine

amplitudes parameterized in units of sphere diameters: A = 0.05, 0.08, 0.10, 0.15, 0.18,

0.20, 0.25, 0.28 and 0.30. We make three categories of amplitudes: low (A = 0.05, 0.08, 0.10),

intermediate (A = 0.15, 0.18, 0.20, 0.25) and high (A = 0.28, 0.30) shaking amplitudes.

The whole assembly is repeatedly and cooperatively packed using nonsequential reorga-

nizations which represent the effect of shaking. We carry out 10 sets of simulation and

computes packing density as a function of shaking amplitudes over 105 cycles. Also,

Cartesian coordinates (x, y, z) of spheres are collected over an interval of 100 shakes. In
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next sections, we give a detailed analysis of crystalline transitions and explore in brief

transient behaviors.

3.4 Transient Behavior
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Figure 3.1: Packing density φ plotted against the number of shakes N for low [(a) to
(c)](stars), intermediate [(d) to (g)] (diamonds) and high [(h) and (i)] (circles) shaking
amplitudes. The initial state is sequential random close packing with packing density

0.58.

We briefly discuss the transient behavior of spheres. Figure 3.1 shows the variation of

packing density φ against the number of shakes N . In all cases, the packing density φ

increases slowly for N < 5000, and fluctuates around a steady state value between 0.60

to 0.62, at larger shaking times [Fig. 3.1]. This slow compaction towards vibrational

steady state is due to nonsequential reorganizations [18]. In this state, the packings are

insensitive to further shaking. A detailed analysis of transient behaviors is discussed by

Barker and Mehta [18].

3.5 Spontaneous Transitions

We notice that within a range of excitation amplitudes there is a sharp increase in

packing density well above the random close packing density 0.64. Moreover, the shaking

process influences the sphere arrangements inside packing.
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(a) (b)

(c) (d)

Figure 3.2: Different phases of sphere packings. (a) φ ∼ 0.58, (b) φ ∼ 0.64, (c)

φ ∼ 0.68, (d) φ ∼ 0.72. The crystalline phase (φ ∼ 0.72.) emerges from initial

disordered phase φ ∼ 0.58.

As the shaking time progresses, spheres move within the volume of size proportional

to amplitude A. Further shaking for extended periods is seen to produce spontaneous

jumps to denser and ordered packings. This has been called as “shaking-induced crys-

tallization” [42]. Figure 3.2 displays different phases of sphere packings after 105 shakes,

for four sample packing densities. The ordered-phase of spheres at maximum density of

0.72 [Fig. 3.2 (d)] evolves from a disordered-phase of spheres with density 0.58 [Fig. 3.2

(a)].

Figure 3.3 shows spontaneous crystalline transitions for different shaking amplitudes. In

all cases, the packing density suddenly increases from low a value of 0.58 to maximum

value, for N > 5000. Table 3.1 shows the values of maximum packing density φmax with

respect to all shaking amplitudes. We observed that the system of spheres attains lower

packing density for low amplitudes than for higher amplitudes, at least in our simulation

times. The situation at lower amplitudes can be changed for longer shaking times. The

crystalline transitions which lead to end states comprise long-lasting partially ordered or

fully ordered symmetries. Specifically, spheres may form crystalline structures of simple



Chapter 3. Spontaneous Crystallization of Granular Spheres 30

cubic (sc), body-centered cubic (bcc), hexagonal close-packed (hcp), face-centered cubic

(fcc) and icosahedral types.
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Figure 3.3: Plots of packing density φ vs. number of shakes N for low (a), interme-

diate ((b) and (c)), and high (d) shaking amplitudes. The maximum values of packing

density φmax with respect to amplitudes are displayed in Table 3.1. The lines serve as

a guide for the eye.

Table 3.1: The maximum values of packing density φmax for all shaking amplitudes.

Amplitude (A) φmax

0.05 0.66

0.08 0.69

0.10 0.70

0.15 0.72

0.18 0.72

0.20 0.72

0.25 0.72

0.28 0.72

0.30 0.72
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3.6 Characterization of Spontaneous Transitions

In this section, we explain the methods of characterization for crystalline transitions.

Next, we divide the analysis in two groups: global and local. The global analysis lays

emphasis on the ordering in the system whereas the local order analysis demonstrates

the development of fcc and hcp clusters.

3.6.1 Global Order Analysis

3.6.1.1 Radial Distribution Function

We define a radial distribution function (RDF) and show how it can be used to examine

spatial structures. Radial distribution function gives the probability of finding a sphere

from a distance r to r+dr [43]. The histograms of sphere distances are constructed over

number of bins. Each bin j has a width of dr and contains n(j) pairs of spheres. The

average number of spheres per bin is calculated as: Nav(j) = n(j)
Ns

.
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Figure 3.4: Plots of radial distribution functions g(r) as a function of normalized
distance r/a for various packing density φ. The number of peaks shows the development

of spatial order from low ((a)) to high ((i)) density.

The radial distribution function g(r) is computed using the formula,

g(r) =
3Nav(j)

4π%((r + dr)3 − r3)
, (3.3)
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where % = Nsp/V is the density of the system and Nsp is the number of spheres in a

volume V . In case of hard spheres with diameter a, g(r) = 0 for r < a.

Figure 3.4 shows the RDF g(r) as a function of r for different packing densities, as

generated by our simulations. Note that more and more peaks appear as the packing

density increases. The appearance of peaks in the RDF confirms spatial order in the

system via its indication that the spheres are at well-defined distances from each other.

The fact that both fcc and hcp [see, for example, the peak at 1.91 in Fig. 3.4(g)] peaks

are observed already indicates that, locally, both types of order are present.

3.6.1.2 Global Bond Orientational Order Parameter

In addition to radial distribution function, we utilize the global bond order orientational

order parameters for more detailed analysis. Steinhardt et al., [44] have developed the

global bond order parameters as:

Ql,global ≡

[
4π

2l + 1

l∑
m=−l

∣∣∣〈Ylm(Θ(~r),Φ(~r))〉
∣∣∣2]1/2

. (3.4)

Here, Y m
l (Θ,Φ) are spherical harmonics defined with respect to an arbitrary coordinate

system and l,m are integers. The spherical harmonics are computed with respect to

a bond, i.e. a line joining a sphere with its neighbors. Furthermore, hcp cluster and

cubic symmetry have nonzero averages for l ≥ 4 and for even l, the spherical harmonics

preserve the inversion symmetry [44]. The choice, l = 6 is sensitive to crystallization

[44]. We first calculate the spherical harmonics,

Y m
l (Θ,Φ) = (−1)m

[
(2l + 1)(l −m) !

(4π)(l +m) !

]1/2

Pml (cos Θ)eimΦ, (3.5)

where Pml (cos Θ) are associated Legendre polynomials. The global bond orientation

order parameter Q6,global is calculated using Eq. (3.4) for different packing densities. The

averages in Eq. (3.4) are taken over all the bonds in the system for 100 configurations.

Figure 3.5 shows the variation of Q6,global against packing density φ. We mention here

that the variation of Q6,global with shaking amplitude is implicit in the figures, since

amplitude governs both the value of the final density max reached in a given time, as

well as its rate of change. A universal feature is that after an initial increase, global order

is seen to rise slightly at φ ∼ 0.62 and increase steadily after φ = 0.64 until the final
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Figure 3.5: Variation of Q6,global against packing density φ. Note the slight jump
(kink) at 0.62 and steady rise after 0.64. The global order shows breakdown at 0.69
[(c), (d), (g), (h) and (i)]. The vertical line markers at φ = 0.62 (dotted line) and 0.64

(dot dashed line) serve as a guide to the eye.

density of φmax is reached. This indicates that the shaking strength plays an important

role in this protocol. Experiments on sheared granular spheres [34] show that φ ∼ 0.62 is

the onset of ordering, where the ordering begins, which is suggested by our simulations

as well. After φ ∼ 0.64, our results suggest a tendency towards ordered structures; this

could be a critical state. This critical state is also suggested by other simulations of hard

spheres [45, 46, 47]. We note that there appears to be a temporary ‘breaking’ of order

around φ ∼ 0.69 in some cases before crystallinity is reached. Overall, the results of

evaluating the Q6,global order parameter reveals that there are significant changes in the

packings at densities 0.62, 0.64 and 0.69. This global order parameter, however, does not

distinguish hcp from fcc. Our observations of local orders confirm the phenomenon of

spontaneous crystallization to fcc or hcp or mixtures of the two, which will be discussed

in the next sections. Other symmetries are not observed, at least within our simulation

times.

3.6.2 Local Order Analysis

The onset of global ordering must have local precursors; we investigate the ordering of

local clusters in the rest of this chapter. We divide the local order analysis into two
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group. First, we present the results of local orders for spheres with all coordination

numbers. Secondly, we give the local order analysis for fcc and hcp sphere-clusters.

3.6.2.1 Local Bond Orientation Order Parameter

Steinhardt et al. [44] defined the local bond orientation order parameters as,

Ql,local(i) ≡

 4π

2l + 1

l∑
m=−l

∣∣∣∣∣∣
Ns(i)∑
j=1

Ylm(Θji,Φji)/Ns(i)

∣∣∣∣∣∣
21/2

, (3.6)

where Ylm are spherical harmonics, with l and m integers. The angles Θji and Φji are

polar angles with respect to an arbitrary coordinate system, characterizing the bond

vector ~rij from sphere j to sphere i and Ns(i) is the number of neighbors of sphere i.

The sum and averages in Eq. (3.6) are computed over all neighbors Ns(i) of a sphere i.

The numerical values [44, 45, 48] of Q6,local and Q4,local for different structures are given

in the Table 3.2.

Table 3.2: Numerical values of local bond orientational order parameters Q6,local and

Q4,local for different crystal structures.

Symmetry Q6,local Q4,local

Simple cubic 0.354 0.764

Face-centered cubic 0.575 0.191

Hexagonal close packed 0.485 0.097

Body-centered cubic 0.511 0.036

Icosahedral 0.663 0.000

3.6.2.2 Local Orders of Sphere Packings

In this section, we present local order analysis of spheres packings. We have calculated

Q6,local and Q4,local using Eq. (3.6), for all spheres with their corresponding nearest

neighbors, i.e., for all Ns(i). Figure 3.6 shows the scatter plots of local order parameters

at densities φ = 0.62, 0.64 and φmax, for low (A = 0.05), intermediate (A = 0.15) and

high (A = 0.30) shaking amplitudes. At low packing densities 0.62 and 0.64, the plots

of local order parameters show large scatter [Figs. 3.6 (a), (b), (d), (e), (d) and (h)].
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Figure 3.6: Plots of Q6,local vs. Q4,local for sphere packings of densities φ ∼ 0.62,
0.64 and φmax for sample amplitudes A = 0.05 (low amplitude) [(a) to (c))], 0.15

(intermediate amplitude) [(d) to (f))] and 0.30 (high amplitude) [(g) to (i)].

On the other hand, at maximum density φ ∼ 0.72, Figs. 3.6(f) and 3.6 (i) depict tight

clusters of Q6,local and Q4,local for intermediate and high amplitudes respectively. This

indicates that spheres packings exhibit disorder at low packing densities of 0.62 and 0.64

and order at φ ∼ 0.72.

3.6.2.3 Detection of fcc and hcp Sphere-clusters

In a stable fcc and hcp lattice structures, a cluster of 12 spheres around a central sphere

gives a maximum packing density of φ ∼ 0.74. We therefore considered an assembly of 13

spheres, which we will henceforth refer to as a sphere-cluster. This will be the basic unit

of our investigations where we will use local measures to investigate the predominance

of either form of crystalline structure.

The fcc and hcp structures differ in their stacking sequences. This difference of stacking

is reflected in their values of the Q4,local and Q6,local through spherical harmonics. By

choosing, Ns(i) = 12, we restrict ourselves to spheres which only have 12 neighbors, so

that each data point gives a value of the local bond order parameter of a sphere-cluster

as defined in Eq. (3.6). This is consistent with our main purpose, which is to check

whether fcc or hcp symmetries predominate locally in sphere packings, as a function
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of shaking amplitude. This choice is perfectly suitable for distinguishing hcp clusters

from fcc clusters. However, this choice of local order parameters is not in general useful

in distinguishing order from disorder of a system. It would lead to a strong bias, by

leaving out the sphere-clusters which do not have exactly 12 neighbors. We note that

the values of Q6,local and Q4,local for fcc and hcp sphere-clusters are (0.575, 0.191) and

(0.485, 0.097) respectively [44, 45, 48].

We divide our local order analysis of fcc and hcp clusters into three temporal stages

with respect to values of packing densities and shaking amplitudes. First, we discuss the

disordered clusters corresponding to density φ from 0.61 to 0.65. Secondly, we emphasize

the partially ordered clusters at φ ∼ 0.68 and 0.69. Finally, we discuss the clusters at

highest density φmax achieved. These results have been shown using scatter plots of

Q6,local and Q4,local and non-parametric kernel density plots of Q6,local.

3.6.2.3.1 Disordered Sphere-clusters at Low Densities

We have considered the nucleation of fcc and hcp sphere-clusters; other symmetries

are not examined. Note that our simulation algorithm considers the parameterized

amplitudes which introduces a free volume for rearrangements of spheres. As shaking

progresses, spheres build coordination with their neighbors within available volume.

Since such collective rearrangement is the catalyst which drives the nucleation of order

in a packing, we would expect more rapid nucleation to occur for larger free volumes,

i.e., the larger amplitudes in our set of nine. This nucleation process of spheres starts

at the low densities for all amplitudes. We note that none of these is, of course, large

enough to cause the assembly to be so fluidized that order never sets in.

Figure 3.7 shows the disordered states of sphere-clusters from φ ∼ 0.61 to φ ∼ 0.63

respectively. The scatter plots of Q6,local vs. Q4,local and probability density plots of

Q6,local confirm that sphere packings in this range are largely disordered at a local level.

Note that for φ ∼ 0.62 and 0.63, Fig. 3.8 displays the onset of double peaked distri-

butions. Both peaks are, however, relatively broad, indicating that full crystallization

has not occurred. This is consistent with our remark that φ ∼ 0.62 could possibly be

thought of as the first hint of crystallization.
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Figure 3.7: Plots of Q6,local vs. Q4,local. The scattered values show disordered states

of φ ∼ 0.61 (stars), φ ∼ 0.62 (open circles) and φ ∼ 0.63 (open triangles). The

horizontal line markers at 0.485 (blue solid line for hcp) and 0.575 (magenta dashed

line for fcc) serve as a guide for the eye.
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Figure 3.8: Probability density plots of a Q6,local for φ ∼ 0.61 (black solid line), 0.62

(red dash-dotted line) and 0.63 (green dashed line). The peaks are broad and robust.

The vertical line markers at 0.485 (blue solid line for hcp) and 0.575 (magenta dashed

line for fcc) serve as a guide for the eye.

Partially ordered sphere clusters begin to make their presence felt at φ ∼ 0.64 and 0.65

respectively. These are less disordered clusters than those at low densities [Fig. 3.9].
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Figure 3.9: Plots of Q6,local vs. Q4,local for the densities φ ∼ 0.64 (stars) and 0.65

(open circles). Both the states are disordered. The φ ∼ 0.65 state has less scatter than

0.64. The horizontal line markers at 0.485 (green solid line for hcp) and 0.575 (red

dashed line for fcc) serve as a guide for the eye.
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Figure 3.10: Probability density plots of a Q6,local for φ ∼ 0.64 (magenta solid line

), 0.65 (blue dashed line). The distributions have sharper peaks than before with some

predominance of the second peak. The vertical line markers at 0.485 (green solid line

for hcp) and 0.575 (red dashed line for fcc) serve as a guide for the eye.
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The number of nucleating sites increases more than that at lower densities, indicating

that ordering has been facilitated by access to greater free volume. The peaks of prob-

ability density for fcc and hcp ordering [ Fig. 3.10] are sharper than at lower densities,

indicating a greater proportion of ordered sphere-clusters. In fact, we note that the

second peak of Q6,local densities is more consistently observed than the first peak [See

Fig. 3.10].

3.6.2.3.2 Partially Ordered Clusters : Competition between fcc and hcp

Our discussions so far have only called attention to disordered clusters. We now char-

acterize the states of packing densities of φ ∼ 0.68 and 0.69 [Fig. 3.11]. The number of

sphere-clusters as well as the degree of ordering of spheres within clusters increases. In

this intra-cluster dynamics, shaking force is used in rearrangement of the spheres. Con-

sequently, the important issue is the competition between hcp and fcc ordering (rather

than the competition between order and disorder). We notice accordingly that there is

now a tendency for the sphere clusters around the fcc and hcp values, a process which is

much sharper for the higher of the two densities. The local order parameters are broadly

divided into two groups at φ ∼ 0.68 [Fig. 3.11] for all shaking amplitudes.
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Figure 3.11: Plots of Q6,local vs. Q4,local for densities φ ∼ 0.68 (open circles) and 0.69

(stars). The state of φ ∼ 0.68 has more scatter than 0.69. Notice the sharp division

into two distinct groups for φ ∼ 0.69. The special noticeable situations are for A = 0.10

((b)) and 0.15 ((c)). The horizontal line markers at 0.485 (blue solid line for hcp) and

0.575 (magenta dashed line for fcc) serve as a guide for the eye.
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The packing density φ ∼ 0.69 is the maximum density achieved for A = 0.08. The most

interesting case is that of density of the φ ∼ 0.69 for A = 0.10 and 0.15, showing a single

cluster. In contrast, two partially ordered clusters emerge for A = 0.18, 0.20, 0.25 and

0.30 [Fig. 3.11]. We speculate that the dearth of free volume at A = 0.10 and 0.15 could

have led to the interruption of evolution into hcp ordering since this seems to set in for

higher amplitudes.
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Figure 3.12: Probability density plots of Q6,local for φ ∼ 0.68 (cyan solid line), 0.69

(orange dashed line). The peaks of φ ∼ 0.69 are sharper than those of 0.68. For

φ ∼ 0.69 at A = 0.10 and 0.15 only one sharp peak at Q6,local ∼ 0.575 is visible ((b)

and (c)). The vertical line markers at 0.485 (green for hcp) and 0.575 (black for fcc)

serve as a guide for the eye.

The kernel density plots [Fig. 3.12] support our claim as well. The distributions of

Q6,local for φ ∼ 0.69 are sharper than those for 0.68. Note that, a breakdown of global

ordering was observed at φ ∼ 0.69. Our local ordering analysis suggests that interfaces

between crystallites of fcc and hcp might be responsible for this.

3.6.2.3.3 Sphere-clusters at Maximum Densities

This section focuses on the features of sphere-clusters at maximum densities φmax

achieved for each of the shaking amplitudes considered. We divide these features into

three categories. First, we give the partial or incomplete evolution of clusters for low

amplitudes. Secondly, we address the emergence of single fcc clusters for intermediate



Chapter 3. Spontaneous Crystallization of Granular Spheres 41

amplitudes. Finally, we present the coexistence phase of fcc and hcp clusters for high

amplitudes.

(A) Incomplete Sphere-clusters:

We begin with our analysis of ordering corresponding to maximal densities attained at

low amplitudes A = 0.05, 0.08 and 0.10. For these amplitudes, the sphere-clusters are

not able to achieve full crystallization, at least in our simulation times.
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Figure 3.13: Plots of the maximum densities for A = 0.05, 0.08, and 0.10. Scatter

plots of Q6,local vs. Q4,local are distributed into two groups. The probability density

plots ((b), (d) and (f)) indicate a second peak which is sharper than the first. The

horizontal and vertical lines at 0.485 (for hcp) and 0.575 (for fcc) serve as a guide for

the eye.

Figure 3.13 shows the scattered plots of Q6,local vs. Q4,local and the probability density

plots of Q6,local. For each case, local order values indicate the enhancement of fcc

ordering than hcp [Figs. 3.13(a), 3.13(c), and 3.13(e)]. Also, the sharpness of second

peak of the probability density of Q6,local gives a clear indication of dominance of fcc

[Figs. 3.13(b), 3.13(d), and 3.13(f)]. We cannot rule out a further evolution for longer

shaking times, and in fact we would expect more complete ordering to emerge in that

limit for the lowest shaking amplitudes.
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(B) Single fcc Clusters :

For intermediate amplitudes (A = 0.15, 0.18, 0.20 and 0.25), a single fcc phase appears at

asymptotic density φmax ∼ 0.72 [Fig. 3.14]. This seems very robust, lending support to

our arguments that an optimal range of amplitudes exist for spontaneous crystallization

into single fcc state. The values of Q6,local and Q4,local fall into the intervals (0.571, 0.575)

and (0.1905, 01925) respectively.
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Figure 3.14: The scatter plots of Q6,local vs. Q4,local show a single fcc cluster for a

maximum density of φ ∼ 0.72 for A = 0.15 0.18, 0.20, and 0.25.

(C) Coexistence of fcc and hcp Clusters :

For higher amplitudes A = 0.28 and 0.30, we see a clear separation of two kinds of

ordering at φmax ∼ 0.72. Figure 3.15 shows the coexistence of fcc and hcp, centered on

the lines corresponding to respective values both structures. This coexistence reinforces

the conclusions of previous simulations [49, 50, 51]. However, fcc ordering is still pre-

dominates: the relative fraction of fcc sphere clusters, given by Nfcc/(Nfcc + Nhcp), is

0.78 for A = 0.28 and 0.77 for 0.30, where Nfcc and Nhcp are numbers of sphere-clusters

for fcc and hcp structures, respectively.

We emphasize of course that these results are valid for the time of shaking we have

considered, and so we cannot rule out further crossovers for longer periods. Although

experimental studies have investigated the coexistence of these two cluster types in



Chapter 3. Spontaneous Crystallization of Granular Spheres 43

colloids [37, 38, 39, 40] and granular materials as a function of shear rate [34], we believe

that this is the first attempt to analyze crystalline clusters systematically by varying

shaking amplitudes.
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Figure 3.15: Graphs of Q6,local vs. Q4,local show the coexistence of two fcc and hcp

sphere-clusters. The data of fcc and hcp cluster is again plotted in (c), (d) and (e), (f)

for the respective amplitudes. The horizontal line markers at 0.485 (green for hcp) and

0.575 (red for fcc) in (a) and (b) serve as a guide for the eye.

3.7 Conclusions

We have carried out computer simulation of shaken granular packings over a range of

amplitudes. Shaking plays a vital role in the development of crystalline orders. We

have observed that spontaneous crystallization occurs in our chosen dynamical regime

in the limit of long shaking times. Sphere packings shaken at low amplitudes need more

time to manifest full crystallisation than those shaken at high amplitudes. The global

order measurements of radial distribution function and bond orientation order parameter

Q6,global confirm the spatial orders. Our observations of global bond orientational order

parameter suggests that the density φ ∼ 0.64 is a critical density. Also, an apparent

breakdown of global order is seen at φ ∼ 0.69 which our local order parameters suggest

may be due to interfaces between crystallites of fcc and hcp. Our local order analysis

confirms that spheres clusters are disordered at low packing densities for all shaking

amplitudes. Also, we noted that at maximum packing densities, there may be an optimal
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range of amplitudes where crystallization into a single fcc state occurs. Amplitudes even

higher than this lead to a coexistence of hcp and fcc order, with the latter dominating.
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Chapter 4

Structural Insights to Granular

Packings

4.1 Geometrical Method

Mathematical methods, based on partitioning the given space, identify the geometrical

structures of atoms and molecules [1]. The term ‘partitioning’ relates to allocation

of all points or objects in the given space with their closest neighbors. The resulting

geometrical regions or partitions are called Voronoi cells. Moreover, dual partitions for

Voronoi cells correspond to Delaunay diagrams [2, 3]. In this chapter, we have shown

Delaunay tessellations of sphere packings.

4.1.1 Basics of Voronoi-Delaunay Tessellation

A Voronoi diagram can be constructed by assigning a closest point to every other point in

the hyperplane [2]. For instance, consider a set of n points, c1, c2..., cn in two-dimensional

Euclidean plane. For each point ci with coordinates (xi, yi) in the set, we can draw a

boundary enclosing all the intermediate points lying closer to ci than to other points in

the set. Let us illustrate this in simple mathematical terms. The Euclidean distance

between the two points is calculated as: ds(c1, ci) =
√

(x1 − xi1)2 + (y1 − yi1)2. If ci is

the point nearest to c1 than other point cj then the region defined by the expression,

48
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Vv(ci) = {x|‖x− xi‖ ≤ ‖x− xj‖, i 6= j},

= {x|‖ds(c1, ci‖ ≤ ‖ds(c1, cj‖, i 6= j}, (4.1)

is a Voronoi polygon associated with ci [2].

Figure 4.1 depicts the Voronoi-Delaunay triangulation of points of uniform random dis-

tribution. The set of all Voronoi polygons for a given point set is called Voronoi diagram.

First, Voronoi polygons (black lines) are generated and accordingly, the convex hull, i.

e. the intersection of all convex sets constructs the Delaunay triangles (red lines) [Fig.

4.1]. An edge, the side of a Voronoi polygon, is shared by two polygons. Now, if we join

generator points (blue stars) of all Voronoi polygons by line segments then the resulting

digram correspond to Delaunay triangulation [2]. Triangulation in three-dimensional

space is called ‘Tetrahedralization’ [2]. The shapes of Delaunay and Voronoi diagrams

reveal the geometrical arrangement of points in a set [4].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 11
0

0.1

0.2
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0.4
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0.7

0.8

0.9

11

Figure 4.1: Two dimensional Voronoi-Delaunay Tessellation for points (blue stars)

of uniform random distribution. The solid black lines are edges of Voronoi polygons.

Delaunay triangles (solid red lines) have empty interiors.

In Fig. 4.1, the Delaunay triangles (red lines) have empty interior. The construction

of triangles follows the Delaunay empty circle property [2, 5]. The basic unit of the

tessellations is a ‘simplex’ in a given dimension; for example, a triangle in 2D and a

tetrahedron in 3D [2, 5]. A tetrahedron is the basic unit of Delaunay tessellations that
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are used for geometrical analysis of sphere packings [6]. The computer algorithms of

tessellations construct tetrahedra from the coordinates of spheres [6]. The parameters

of regular or quasiregular tetrahedron such as volume, length, and dihedral angles give

geometrical insights of sphere packings [5, 6, 7]. In particular, clusters of regular or

quasiregular tetrahedra represent crystalline structures of spheres [6, 8]. Also, the shapes

of both Delaunay tetrahedron and its neighbors are used to identify the fcc and hcp

structures [9].

4.1.2 Statistical Mechanics of Granular Packings

Edwards et al., [10, 11] have developed a statistical mechanical framework for the dy-

namics of granular material. They assumed that the mechanically stable states of the

system are equally probable and the averages can be taken over jammed states [10, 11].

The central quantity of this approach is the “compactivity”. The compactivity [10, 11]

is defined as, χ = ∂V/∂S analogous to the thermodynamic temperature T = ∂E/∂S.

In this approach, the volume V and compactivity χ play the roles of energy E and the

temperature T respectively. Other analogous quantities are explained in [12].

Aste et al., [13, 14, 15] have used the Edwards statistical mechanical approach to de-

scribe equilibrium properties of granular packings. They have defined the configurational

entropy,

S = −
∑
V

P (V ) lnP (V ) +
∑
V

P (V )S(V ), (4.2)

where P (V ) and S(V ) are probability and entropy of state with volume V , respectively.

It is assumed that the packings can be partitioned into k elementary Voronoi or Delaunay

cells [13]. Therefore the cells with arbitrary volumes v, but greater than vmin, occupy

total volume V in the phase space [13, 14, 15]. In this case, the volume of accessible

phase space,

Ω(V ) =
(V − kvmin)k−1

Λ3k(k − 1)!
, (4.3)

where Λ is a constant analogous to the Debye length. The probability distribution P (V )

[14, 15] of volume V is given as,

P (V ) =
kk

Γ(k)

(V − Vmin)k−1

(V − Vmin)k
exp

(
−k(V − Vmin)

V − Vmin

)
, (4.4)
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where Vmin = kvmin. Equation 4.4 is a Gamma distribution in the variable V − Vmin

with a ‘shape parameter’ k and a ‘scale parameter’ (V−Vmink ). The variance of Gamma

distribution of P (V ) is given as:

σ2
v =

(V − Vmin)2

k
, (4.5)

where V is the average volume. Moreover, a granular temperature [14, 15] can be

defined, following the analogy with the thermodynamic temperature β = (1/kBT ) =

∂(entropy)/∂(energy) as,

βgr = χ−1 = ∂(S)/∂(V ). (4.6)

Using Eq. 4.2 and Eq. 4.3,

β−1
gr = χ =

V − Vmin
k

. (4.7)

Further, using Eq. 4.5 and Eq. 4.7, χ becomes,

χ =
σ2
v

V − Vmin
. (4.8)

Equation 4.7 reveals that the compactivity χ is the average free volume per elementary

cell [13, 14]. After substituting Eq. 4.4 into Eq. 4.2, the configurational entropy [14, 15]

can be obtained as,

S = k

[
1 + ln

(
V − Vmin
kΛ3

)]
, (4.9)

where V is the average volume and Vmin = mvmin is the minimum attainable volume.

The quantity vmin is the minimum volume of Voronoi cell and k is shape parameter of

Gamma distribution. Aste et al., [13, 14] have shown that the volumes of Voronoi or

Delaunay simplices follow Gamma distribution. Also, the configurational entropy and

the volume fluctuations are calculated for granular sphere packings [3].

4.2 Delaunay Tessellations of Sphere Packings.

We perform the Delaunay tessellations on the simulated data of sphere packings. Our

algorithm is written in MATLAB which constructs the Delaunay partitions using the

Cartesian coordinates (x, y, z) of spheres. This algorithm successfully generates the

Delaunay tetrahedra (simplices) for all simulated packing densities. Typically, more

than six thousand tetrahedra are generated for 1273 spheres.
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(a) (b)

(c)

Figure 4.2: A typical irregular ((a)), and regular ((b)) tetrahedra and Delaunay

tessellations ((c)) of spheres at packing density φ ∼ 0.64. The vertices of tetrahedra

represent the centers of spheres.

The MATLAB program also supplies the sets of vertices and edges of Delaunay tetrahe-

dra. These sets are further used for the computation of the volumes, dihedral angles and

length of edges of tetrahedra. Figure 4.2 depicts the irregular, regular and Delaunay

tessellations of spheres packing of density 0.64. Note that, the vertices of tetrahedra

represent the centers of spheres. Therefore, the shapes of tetrahedra determine the ar-

rangement of spheres. Consequently, the clusters of regular or quasiregular tetrahedra

typify stable and closed sphere packings. We follow the goodness criteria of tetrahedron

and choose good tetrahedra with dihedral angles lies between 14◦ to 154◦ [16, 17].

We divide the analysis into three categories. First, we present the statistics of volumes of

tetrahedra. Secondly, we give the analysis of volume fluctuations and entropy. Finally,

we provide detailed account of dihedral angles and length measure’s of tetrahedra.
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4.2.1 Statistics of Volumes of Tetrahedra

The volume of each tetrahedron is calculated using formula [18],

V =

∣∣∣(a− d).((b− d)× (c− d))
∣∣∣

6
, (4.10)

where, a,b, c and d are vectors representing the coordinates of the tetrahedral vertices.

4.2.1.1 Distribution of Volumes of Delaunay Tetrahedra

We first calculate the values of Vmin and V , and then use the scaling form, V−Vmin
V−Vmin

[13, 14, 19]. Figure 4.3 shows the Gamma distributions of volumes of the tetrahedra for

three representative shaking amplitudes: low (A = 0.05), intermediate (A = 0.18) and

high (A = 0.30). For all cases, the distributions become narrower as density increases

from 0.58 to 0.64 [Fig. 4.3 (i) to Fig. 4.3 (iii)]. After φ ∼ 0.64, the peak of distribution

shift to a value 1 [Figs. 4.3 (iv) to 4.3 (vi)]. Interestingly, Gamma PDF manifests a

sharp peak at φ ∼ 0.68 for high amplitude A = 0.30. Note that our global bond order

analysis shows a breakdown at density φ ∼ 0.69.

Table 4.1: The values of the shape k, and scale b parameters of Gamma distribution

of a variable V−Vmin

V−Vmin
for three shaking amplitudes. The φ ∼ 0.66 is the maximum

density achieved for A = 0.05.

φ A = 0.05 A = 0.18 A = 0.30
k b k b k b

0.58 13.9± 0.2 0.071± 0.001 13.9± 0.2 0.071± 0.001 13.9± 0.2 0.071± 0.001
0.61 12.2± 0.2 0.081± 0.001 12.6± 0.2 0.078± 0.001 11.1± 0.1 0.090± 0.002
0.62 13.2± 0.2 0.075± 0.001 14.7± 0.2 0.068± 0.001 22.3± 0.4 0.044± 0.001
0.63 32.0± 0.6 0.031± 0.001 26.6± 0.5 0.038± 0.001 26.9± 0.5 0.038± 0.001
0.64 15.7± 0.3 0.063± 0.001 26.8± 0.5 0.037± 0.001 18.1± 0.3 0.055± 0.001
0.65 22.4± 0.4 0.044± 0.001 25.5± 0.4 0.044± 0.001 16.6± 0.2 0.060± 0.001
0.66 26.8± 0.5 0.037± 0.001 20.5± 0.3 0.048± 0.001 24.4± 0.4 0.041± 0.001
0.67 29.1± 0.5 0.034± 0.001 25.7± 0.4 0.039± 0.001
0.68 21.6± 0.4 0.046± 0.001 130.6± 2.3 0.007± 0.0001
0.69 27.4± 0.5 0.036± 0.001 25.8± 0.4 0.037± 0.001
0.72 20.4± 0.3 0.046± 0.001 11.8± 0.2 0.081± 0.001

Table 4.1 displays the values of shape (k) and scale (b) parameters of Gamma dis-

tributions. We note a drastic change in the shape parameter k at densities 0.63 and

0.64 for low and high amplitudes (see Table 4.1). On the contrary, in the interval of
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Figure 4.3: Gamma distributions of volumes for low (A = 0.05), intermediate (A =
0.18) and high (A = 0.30) amplitudes. (i) to (vi): Gamma PDF’s at disordered and
maximum packing densities. The peak of the distributions become narrow as density
increases. (vii) to (ix): log-log plots of Gamma PDF’s for three shaking amplitudes.
The values of shape parameter k, scale parameter b, mean and variance are shown in

Table 4.1 and Table 4.2.

0.58 < φ < 0.64, k increases with density for intermediate amplitude A = 0.18. Surpris-

ingly, k becomes very large at φ ∼ 0.68 for high amplitude A = 0.30. Other parameters,

the mean ‘kb’ and the variance ‘kb2’ of Gamma distributions are shown in Table 4.2.

These values also suddenly alter at φ ∼ 0.63 for low and higher amplitudes. In addition,

we observe another change in the variance at φ ∼ 0.68 for A = 0.30. Taken together, the

parameters of Gamma distributions exhibit drastic changes at densities 0.63, 0.64, and

0.68. Furthermore, we have shown the log-log representations of Gamma PDF’s [Figs.

4.3 (vii) to 4.3 (ix)]. This may suggests the hyperbolic type distributions [20], which

deserves further investigation.
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Table 4.2: The values of the mean and variance of Gamma distribution of a variable
V−Vmin

V−Vmin
for three shaking amplitudes. The φ ∼ 0.66 is the maximum density achieved

for A = 0.05.

φ A = 0.05 A = 0.18 A = 0.30
mean variance mean variance mean variance

0.58 0.9922 0.0707 0.9922 0.0707 0.9922 0.0707
0.61 0.9940 0.0807 0.9910 0.0777 0.9928 0.0891
0.62 0.9970 0.0750 0.9980 0.0675 0.9946 0.0443
0.63 1.0000 0.0312 0.9994 0.0375 1.0222 0.0388
0.64 0.9931 0.0628 0.9967 0.0370 0.9939 0.0548
0.65 0.9966 0.0443 0.9961 0.0441 0.9988 0.0599
0.66 0.9844 0.0362 0.9898 0.0477 0.9911 0.0403
0.67 0.9922 0.0338 0.9983 0.0387
0.68 0.9920 0.0456 1.0003 0.0077
0.69 0.9972 0.0363 0.9535 0.0353
0.72 0.9472 0.0439 0.9578 0.0780

4.2.1.2 Volume Fluctuations

We compute the variance, σ2 = V 2 − V 2
of volumes of Delaunay tetrahedra using a

nonscaled variable V .
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Figure 4.4: Plots of σ2 vs. φ for low ((a) to (c)), intermediate ((d) to (g)) and high
((h) to (i)) shaking amplitudes. The variance σ2 decreases in the region of density
between 0.58 and 0.64. The vertical lines at 0.64 (dotted line) and 0.68 (dot dashed

line) serve as a guide for the eye.
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Figure 4.4 shows the variation of σ2 against packing density for all shaking amplitudes.

In all cases, the variance σ2 decreases in the interval of density 0.58 < φ < 0.64.

Further, it either increases or decreases in the range between 0.65 and 0.68 for all shaking

amplitudes. Specifically, this change occurs at density φ ∼ 0.66. In addition, at density

φ ∼ 0.69, the variance show sudden change for intermediate [Figs. 4.4 (d) to 4.4 (g)]

and high shaking amplitudes [Figs. 4.4 (h) and 4.4 (i)]. We observe that the variance

changes at packing densities 0.64 and 0.68. Note that our global and local order analysis

identify the criticality and breakdown of orders at 0.64 and 0.68 respectively. Therefore,

the correlation between the shaking process and the developments of orders of spheres

may explain the drastic changes in the variance. Our results agree with the findings of

other studies of jammed [21] and crystallized [22] granular packings.

4.2.1.3 Configurational Entropy of Volumes

We first substitute 1/Λ3 = 50 in Eq. 4.9 and then calculate the configurational entropy

[13, 14]. The average volume V and the minimum attainable volume Vmin are calculated

for all cases. The value of shape parameter k is obtained from Gamma distribution.
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Figure 4.5: Plots of entropy S vs. φ for all shaking amplitudes. At maximum density

φ ∼ 0.72, S attains minimum for intermediate ((d) to (g)) and high ((h) and (i))

amplitudes. The vertical lines at 0.64 (dot dashed line) and 0.68 (dotted line) serve as

a guide for the eye.
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We define three regions with respect to packing density: disordered region (φ ∼ 0.58 -

0.64), mixed region (φ ∼ 0.65 - 0.68) and ordered region (φ ∼ 0.69 - 0.72). Figure 4.5

shows the variation of entropy S against packing density φ. Over all, the entropy

shows robust behaviour in the disordered region (φ ∼ 0.58 to 0.64) for all shaking

amplitudes. Specifically, it either increases or decreases in the interval of packing density

0.65 < φ < 0.68 (mixed region) for intermediate [Figs. 4.5(d) to 4.5(g)] and high

amplitudes [Figs. 4.5(h) and 4.5(i)]. In the ordered region, from φ ∼ 0.69 to 0.72,

entropy decreases continuously and attains minimum at crystalline density φ ∼ 0.72 for

intermediate [Figs. 4.5(d) to 4.5(g)] and high amplitudes [Figs. 4.5(h) and 4.5(i)]. The

most important limitation for explanation of these results is due to lack of an adequate

formalism of entropy for athermal system.

4.2.2 Percentage of Quasiregular Tetrahedra

In general, length [3] and volume [1, 4] measure’s are useful in identification of regular

or quasiregular tetrahedra. A quasiregular tetrahedron has volume between 0.118 and

0.130 [1, 4]. Instead, we use the length criteria [3, 5] η = lmax − 1 for the calculation

of percentage of quasiregular tetrahedra. Here, lmax is the maximal length of an edge

of a tetrahedron. A regular tetrahedron with equal unit edges has η = 0. We calculate

lmax of Delaunay tetrahedron, and accordingly, pick the quasiregular tetrahedra with

η < 0.255 from a set. Finally, we calculate the percentage of quasiregular tetrahedra.

This percentage indicates the portion of space occupied by quasiregular tetrahedra inside

packing; thus, discloses the degree of regularity of structures in packings.

Figure 4.6 shows the percentage of quasiregular tetrahedra for all shaking amplitudes.

The percentage of quasiregular tetrahedra increases with packing density. In the range

of density, 0.58 < φ < 0.64, the percentage increases rapidly to 25% for all amplitudes.

Further, it increases steadily in the interval of density, 0.64 < φ < 0.68. Finally, the

percentage reach to 31% at maximum density φ ∼ 0.72 for intermediate [Figs. 4.6(d)

to 4.6(g)] and high [Figs. 4.6(h) and 4.6(i)] amplitudes. This infers that regular or

quasiregular structures of spheres become apparent as density increases. We notice

accordingly that the percentage changes at densities 0.64 and 0.68. However, other

studies [3] have reported higher values of percentage of 33%.
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Figure 4.6: Percentage of quasiregular tetrahedra vs. packing density φ . It increases
with packing density and reaches maximum 31% at crystalline density φ ∼ 0.72 for
intermediate ((d) to (g)) and high ((h) and (i)) amplitudes. The vertical lines at 0.64

(dotted line) and 0.68 (dot dashed line) serve as a guide for the eye.

4.2.3 Angular and Length Measures of Tetrahedra

To do more detailed analysis, we focus on angular and length measures of Delaunay

tetrahedra.

4.2.3.1 Dihedral Angle Distributions

The arrangement of common neighbors of a sphere provides a hint of local organization

of packings. In particular, the dihedral angles of tetrahedra that formed by common

neighbors of spheres give insight into regular or irregular structures. Moreover, four faces

of a regular tetrahedron constitute six dihedral angles, corresponding to value 70.5◦ [2].

This value of dihedral angle represents the stable and compact structures of spheres [14].

We first select two triangular faces of tetrahedron from four faces, i.e.,
(

4
2

)
number of

ways and then calculate dihedral angles [7, 23],

cos(ψ) = − (a× b).(b× c)∣∣∣(a× b)
∣∣∣∣∣∣(b× c)

∣∣∣ , (4.11)
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Figure 4.7: Histograms of dihedral angles of tetrahedra for all shaking amplitudes.
(I): disordered packing densities φ ∼ 0.62 (red solid line) and φ ∼ 0.64 (blue solid line).
(II): maximum packing densities φmax (black solid line) and φ ∼ 0.68 (green solid line).

The distributions become narrow as density increases from φ ∼ 0.62 to φ ∼ 0.72.

where, a,b and c are vectors representing vertices of the triangular faces of the tetra-

hedron.

The distributions of dihedral angles of all tetrahedra are shown in Fig. 4.7 for four sample

packing densities φ ∼ 0.62, 0.64, 0.68, and 0.72. The distributions appear broad for low

densities φ ∼ 0.62 and 0.64, for all shaking amplitudes [Fig. 4.7I]. For intermediate (A =

0.15, 0.18, 0.20, 0.25) and high amplitudes (A = 0.28, 0.30), the distributions become

narrow around a value 70◦ at φmax ∼ 0.72 [Fig. 4.7II]. This peak of dihedral angle asserts
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the presence of regular tetrahedra at maximum density φmax ∼ 0.72. On the other hand,

the dihedral angle manifests broad distributions for low amplitudes A = 0.05, 0.08 and

0.10 at maximum densities [Fig. 4.7II].

4.2.3.2 Length Measures : Tetrahedricity and Quartoctahedricity

Spheres can form tetrahedral or octahedral configurations inside the packings [24, 25].

In particular, fcc and hcp configurations generate clusters of regular or quasiregular

tetrahedra and quartoctahedra [9]. A regular tetrahedron has six equal edges. On

the other hand, a regular quartoctahedron has five equal edges and the sixth edge is
√

2 times longer than the other edges [5, 24]. Moreover, a regular quartoctahedron is a

quarter of regular octahedron. Therefore, four congruent quartoctahedra forms a regular

octahedron [24].

Anikeenko et al., [6] have given a systematic method for the detection of regular simplices

(tetrahedra or quartoctahedra) based on their lengths. They have defined two length

measure’s: tetrahedricity T and quartoctahedricity Q [9]. The equation for tetrahedric-

ity is given as,

T =

∑
i 6=j

(li − lj)2

15l
2 . (4.12)

For a regular tetrahedron T = 0.

Similarly, the equation for quartoctahedricity is given as,

Q =

∑
i<j
i,j 6=m

(li − lj)2 +
∑
i 6=m

(li − (lm/
√

2))2

15l
2 , (4.13)

where li, li and lm are lengths of edges of the simplex, m is the index of the longest edge

and l is the average length of tetrahedron. A regular quartoctahedron has Q = 0. It

has been suggested that the minima’s of T and Q distinguish the regular or quasiregular

simplices [6]. These limits also distinguish the fcc and hcp structures [9].

We first compute the length of edges of all tetrahedra, and then calculation of T is

carried out according to Eq. 4.12. For the calculation of Q, the longest edge lm is found

first and then Eq. 4.13 is used. Figures 4.8 and 4.9 illustrate the kernel density plots of

T and Q respectively, at different packing densities.
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Figure 4.8: Kernel density of tetrahedricity T for all amplitudes at different densities.
(I): The distributions of T have no sharp minima’s at densities φ ∼ 0.62 (black solid
line), 0.63 (red solid line), 0.64 (green solid line) and 0.65 (blue dotted line). (II): The
distribution of tetrahedricity T has a sharp minimum at density φ ∼ 0.72 (orange solid

line) for intermediate ((d) to (g)) and high ((h) and (i)) amplitudes.

No sharp minima’s of T andQ are observed at low packing densities of φ ∼ 0.62, 0.63, 0.64,

and 0.65 for all shaking amplitudes [Figs. 4.8I and 4.9I]. At maximum density φmax ∼

0.72, both distributions manifest the minima’s at 0.018 and 0.013 respectively, for in-

termediate (A = 0.15, 0.18, 0.20, 0.25) [Figs. 4.8II (d) to (g) and Figs. 4.9II (d) to (g)]

and high amplitudes (A = 0.28, 0.30) [Figs. 4.9II (d) to 4.9II (g) and Figs. 4.9II (h) to
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4.9II (i)]. The emergence of these sharp minima’s implies that the degree of regularity

of simplices increases with packing density. These findings are are consistent with those

of Medvedev’s findings [9].
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Figure 4.9: Kernel density of quartoctahedricity Q for all amplitudes at various

packing densities. (I): The distributions of Q have no sharp minima’s at low densi-

ties φ ∼ 0.62 (black solid line), 0.63 (red solid line),0.64 (green solid line) and 0.65

(blue dotted line). (II) At maximum density φmax ∼ 0.72, Q has sharp minimum for

intermediate ((d) to (g)) and high amplitudes ((h) and (i)).
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4.3 Conclusions

This chapter has given the detailed study of Delaunay tessellations of sphere packings

via packing densities. We have described the study of volumes of tetrahedra, their fluc-

tuations and entropy. Two parameter Gamma distribution of volumes emerges at all

packing densities. Our findings highlighted the fact that volume fluctuations and en-

tropies show drastic changes at packing densities 0.62, 0.64 and 0.68. The benefit of this

contribution lies in the establishment of an analogy with thermal systems. We observed

that the percentage of regular tetrahedra increases with packing density and reaches

31% for intermediate and high amplitudes at crystalline density of 0.72. Additionally,

we have provided considerable insights into packings through dihedral angles and length

measure’s of tetrahedron. The dihedral angle distribution manifests a peak around 70◦

at maximum density, which indicates the growth of regular tetrahedra. The benefit of

length measures tetrahedricity T and quartoctahedricity Q lies in identifying the regular

or quasiregular simplices. The minima’s of the distributions of tetrahedricity and quar-

toctahedricity appear at 0.018 and 0.013 respectively, which may identify the crystalline

structures.
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Chapter 5

Human Cognition through Eye

Movements

In this chapter, we give a detailed account of the eye movement study. We discuss the

methodology of an eye movements and visual world paradigm. We divide the exper-

imental data analysis into temporal and spatial categories. We mention, in brief, the

theoretical background of the analysis. Temporal analysis of saccade and fixation times

has given for 32 literate and 36 illiterate subjects (participants). Our spatial analysis

includes the construction, diffusive characteristics and Fourier analysis of time series of

eye movements.

5.1 Methodology of Eye Movements

This section explains the visual attention, types and detection of eye movements.

5.1.1 Visual Attention

Cognitive scientists [1, 2] extensively study the mechanisms of cognition through eye

movements. Eye movements serve as an archetype and provide the paths of attention

and its causes. The dynamics of attentional states give clues about the perception during

selection or ignorance of information relevant to ongoing behavior. In particular, our eyes

respond to verbal influences by looking at an object of speech or by imagining its visual

analogues [3]. Moreover, visual attention focuses either with or without accompanying

the eye movements. However, whether eyes disclose the dynamics of attention is a long

66
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standing question [3, 4]. Also, it is important to illustrate some questions: what drives

the eyes from one location to another ?, and how does the process of visual perception

occurs ? To address these questions, we must examine the properties of stimuli, response

and roles of eye, and the brain.

Visual attention is an inner cognitive mechanism, mainly based on psychological [5]

and neurological [6] viewpoints. Both these viewpoints examine the human behavior

and neural mechanisms of learning, memory and attention. For example, psychologists

[7, 8, 9] have carried out experiments on human eye movements during reading, visual

search and scene perception. Their studies suggest that the participants continuously

change their attentional states in response to aural and visual inputs [10, 11]. Also,

both voluntary and involuntary components of attention involve during linguistic tasks

[11]. Further, linguistic study [12] suggests that literacy has direct influence on attention

mechanisms through eye movements. In addition, participants who are given an overt

task to perform may respond differently from those who are tacking images through

unconscious processing; the latter might yield insights that are more natural [13]. A

challenging task is to find the link between components of attention and eye movements

[14].

Neurologists [15, 16] examine the regions of brain and their functions. The human

brain is complex neuronal hardware which processes visual inputs. When light enters

to the eyes, cornea, lens and the retina produce a clear and stable image of visual world

[15, 16]. Each time we move our eye on different locations of an image or an object.

In fact, the diversions of the eyes are controlled by regions of the brain. These regions

build a coherent representation of the visual and sensory inputs. Therefore, the brain

plays a vital role in visual attention [15, 16].

5.1.2 Eye Movements : Types and Detection

Eye movements are broadly divided into three categories: saccade, fixation and small

pursuits [14, 17, 18]. Here, we mention the characteristics of saccade and fixation.

Saccades are rapid, voluntary movements that alter the fovea from one location to

another in the visual scene [14]. On the other hand, fixations are stationary movements

that stabilize the retina over an area of interest in an image or scene [17]. During a

saccade, the visual system is involved in searching, and cognitive processing is minimal;
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while when it is fixated on an object, searching is temporarily at an end, and cognitive

processing is maximal [18]. It is now accepted that attention is not focused on any object

during saccades, as the system searches for its next fixation. Nevertheless, the start and

end of fixations are uncertain [18]. The durations of saccade and fixation movements

depend on cognitive task [18]. It has been shown that durations of fixation lie between

150 ms to 600 ms [19] whereas those of saccades typically vary from 10 ms to 100 ms

[20].

Different eye tracking techniques identify the attentive behavior of the participants. A

few computer algorithms classify the spatial and temporal information of participant’s

eye movements [21]. To identify spatial characteristics, the algorithms are classified into

three types: dispersion-based [22, 23], area-based [24] and velocity-based [25, 26]. The

dispersion-based algorithms consider the dispersion, i.e. spread between successive fixa-

tion points, whereas area-based algorithms recognize the gaze points in area of interest.

The velocity-based algorithms set up thresholds to detect fixation and saccade. In gen-

eral, the velocity of a saccade has two thresholds [21, 25, 26]; the low threshold, 100◦/sec

for fixations and high threshold, 300◦/sec for saccades. Moreover, the distance between

the sampled gaze points gives the velocity of eye movement [25, 26]. A high resolution

eye tracking camera records the coordinates (in pixels) and time durations of fixations

and saccades. In addition, it also records the amplitude, velocity, and the acceleration

of saccades.

5.1.3 Visual World Paradigm

Visual and linguistic information affect the mental processes in our daily life. Tanenhaus

et al., [10] have developed an experimental paradigm which imparts the dynamics of eyes

and attention during spoken language tasks. This experimental paradigm is called “Vi-

sual World Paradigm” (VWP) which mimics the real world. Specifically, this paradigm

is used in an experiment where subjects (participants) look at visual displays in response

to auditory inputs [10]. The visual display contains everyday objects while the auditory

inputs contain neutral sentences [10]. The subject’s eye movements time-lock between

the linguistic inputs during the task [10]. Mishra et al., [27] have studied the effect of

formal literacy on attention of literate and illiterate subjects. Both literate and illiterate

subjects perform the language-mediated task.
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Figure 5.1: Experimental display of visual world paradigm. The auditory sentence
“Usne aaj taara dekha”, (He saw a star today), appeared after 1000 ms display onset.
The phonological analogue to taara (star) is taala (lock), while the semantic analogue

is the image of the sun. The other two images are distractors.

Figure 5.1 shows a typical trial sequence of VWP [27] which contains four black and

white line drawings of common objects. In this display [Fig. 5.1], the auditory sentence

is “Usne aaj taara dekha” (He saw a star today). The sample stimulus shows the

phonological analogue “taala” of target word “taara”, whereas the semantic analogue

of “taara” is the image of sun. The other two objects are distractors. Moreover, in

linguistics, phonology and semantic relate to sounds of speech and meaning of a word or

symbol respectively. For example, the Hindi word ‘magar’ (crocodile in English) can have

a phonological competitor ‘matar’ (peas in English) and, kachua, (turtle in English) as

a semantic competitor [27]. These experiments have been suggested that formal literacy

is a significant enhancer of language mediated visual search and gives an insight into

the overt attentional mechanism [27]. During this visual search, saccades and fixations

are influenced by both the emerging visual and the linguistic representations, and their

interactions [27].
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5.2 Theoretical Methods of Analysis

In this section, we mention in brief the theoretical background of the method of analyses.

5.2.1 Power-law and Scale Invariance

Scaling is the most powerful method for the characterization of physical [28] and biologi-

cal systems [29]. For instance, the scaling analysis and universality classes are developed

in statistical physics to understand the dynamics of phase transitions and critical phe-

nomena [28]. Also, many empirical quantities in biological and economical processes are

modelled using scale transformation [30]. In simple terms, the function g(x) under scale

transformation becomes,

g(cx) = cγg(x). (5.1)

The form of the function remains g(x) invariant after multiplied by the factor c. Further,

the scaling exponent γ characterize the process [30].

A random variable manifests scale invariance property through its probability density

function and correlation function [30]. The scale invariance of random processes is often

expressed in terms of power-laws or inverse power-laws. Besides, a random process favors

an inverse power-law that originates in the spectral analysis [31] and probability density

models [30, 32]. In addition, the decay of autocovariance functions of long-range memory

processes manifests power-law [33]. Furthermore, the inverse power-laws of probability

density indicate that probabilities of random variables clump together across multiple

scales. Let x be an outcome of an experiment. The frequency P (x) of an event x can

be written in terms of inverse power-law [30, 32],

P (x) = B

(
1

xξ

)
, (5.2)

where x ≥ xmin and B normalization factor. Equation 5.2 represents a straight line

with slope ξ in log-log representation,

logP = logB − ξ log x. (5.3)

The appearance of inverse power-law is ubiquitous in many processes. For example, the

inverse power-law of Pareto, Zipf, and Levy types emerged in the distribution of income
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[34], occurrence of word in linguistic study [35], and scale free distributions in foraging

[36], respectively. Also, cognitive scientists recognize the applications of scaling laws in

their studies on human perception [37] and memory [38, 39, 40].

5.2.2 Diffusion Processes

Gaussian distribution describes the ordinary diffusive processes such as Brownian motion

and ordinary random walks [41]. Importantly, the properties of Brownian motion and

random walk obey the central limit theorem. In statistics, the mean and the variance

are the simplest quantities to characterise nature of random variable or processes. For

example, in case of Brownian motion, the mean and the variance are finite, and depend

linearly on time: xt = vt, and x2
t − x2

t = 2Dt [42, 43, 44]. Here, v is the velocity of

Brownian particle and D is the diffusion coefficient. The distribution function of position

x of Brownian particle follows Gaussian [44],

P (x, t) =
1√

2πσ2t
exp

(
− x2

2σ2t

)
. (5.4)

Equation 5.4 is the solution of diffusion equation,

∂P (x, t)

∂t
=
σ2

2

∂2P (x, t)

∂x2
. (5.5)

Some complex systems show anomalous diffusive behavior. The failure of the central

limit theorem in anomalous diffusion indicates a radical departure from Gaussian statis-

tics [42, 45]. Anomalous dynamics further classify into subdiffusive and superdiffusive

categories [42, 45]. In general, the mean and the variance of the anomalous dynamics

grow nonlinearly with respect to time [42, 45]. The mean square displacement (MSD) of

a variable z(t) vary with time, < |z(t)− z(0)|2 >∼ t2H [30, 32]. For H = 1/2, the MSD

is linearly proportional to time and corresponds to the Gaussian process. For anoma-

lous cases, where H 6= 1/2, the MSD increases nonlinearly with time. Furthermore, the

values of H divide the anomalous property into two cases: subdiffusive, 0 < H < 1/2

and superdiffusive, 1/2 < H < 1 [30, 32].

In case of anomalous processes, the distributions of random variables can be written in

terms of Levy’s stable probability laws. For instance, distribution of a random variable

y show a Levy’s inverse power-law distribution [45]: P (y) = y−µ, where 1 < µ < 3. The
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exponent µ is called the Levy index. The probability density function P (y) is not the

solution of ordinary diffusion Eq. (5.5). Moreover, anomalous dynamics is described

using fractional order differential equations [30, 32]. Similarly, numerical methods of

fractional Brownian, and fractional Levy motions can model the anomalous property

[46, 47]. The stochastic approximations [46, 47] for fractional Brownian BH(n) and

fractional Levy LH(n) motions are given as:

BH(n) = C1H

[
n∑

i=−J
(n− i)H−1/2B(i)−

0∑
i=−J

iH−1/2B(i)

]
, (5.6)

where B(i) are Gaussian random variables with zero mean and unit variance. Here H

is the Hurst parameter and the index n denotes time. The constant C1H is so chosen

that the increments, BH(j + 1)−BH(j) have unit variance [46, 47]. Similarly,

LH(n) = C2H

[
n∑

i=−J
(n− i)H−1/2L(i)−

0∑
i=−J

iH−1/2L(i)

]
, (5.7)

where L(i) are Levy random variables and constant C2H is so chosen that the smallest

increments, LH(j + 1)− LH(j) has unit size [46, 47].

5.2.3 Time Series Analysis

A time series is a set of observations, taken sequentially in time. Examples of time

series are the measurements of heart beats [48], the data of weather forecasting [49]

and rainfall [50], and so on. In time series data, adjacent observations are dependent

on each other [51, 52]. The sequences of observations map the probability distribution

function (PDF) of a random variable. Moreover, the length of these sequences and the

accompanied PDF characterize the diffusive properties of time series.

5.2.3.1 Scaling of Time Series

Scaling of time series relies on the assumption that the diffusion process is stationary, i.

e. the PDF is time invariant. Using the scaling methods, the scaling exponents of time

series have been obtained for ordinary and anomalous diffusion [53]. A scale-invariant

PDF of a random variable x satisfy,

ap(x, t) = p(agxx, agtt), (5.8)
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where a is constant. Put agtt = 1 to eliminate the time dependence of p(x, t),

p(x, t) =
1

t1/gt
p(t−gx/gtx, 1) ≡ 1

tδ
F
( x
tδ

)
, (5.9)

where δ = 1/gt is scaling exponent and called diffusion exponent. If the function F in

Eq. (5.9) has Gaussian form then the diffusion becomes ordinary (normal) with δ = 0.5

[53].

In case of anomalous diffusion, particularly in Levy like diffusion, the diffusion exponent

δ is computed using entropy of the processes. This method of analysis is called diffu-

sion entropy analysis (DEA) [53]. The DEA analysis starts with the classical Shannon

entropy functional,

S(t) = −
∫ ∞
−∞

p(x, t) ln(p(x, t)) dx. (5.10)

After substituting the probability density function from Eq. (5.9) in Eq. (5.10), S(t)

becomes,

S(t) = −
∫ ∞
−∞

1

tδ
F (

x

tδ
)
[
lnF

( x
tδ

)
− δ ln t

]
dx. (5.11)

By changing the integration from x to y = x
tδ

, finally we get,

S(t) = As + δ ln(t), (5.12)

where As ≡
∫ ∞
−∞

F (y) ln[F (y)]dy. The slope of resulting line [Eq. (5.12)] gives the

diffusion exponent δ.

In general, the second moment of a random variable x vary with time,

〈x2(t)〉 ∝ t2δ. (5.13)

It has been shown that the Eq. (5.13) fails to give correct value of δ for anomalous

diffusion [53]. The modified form [53] of Eq. (5.13) is given as :

〈x2(t)〉 ∝ t2H . (5.14)

The symbol H is the Hurst exponent. The most common method, standard deviation

analysis (SDA) [54] easily estimates the exponent H for ordinary and anomalous diffu-

sion. Allegrini et al., [54] have given the standard deviation analysis for times series of
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x(t) as:

D(t) =

√∑M−t
i=1 [xi(t)− x(t)]2

M − t− 1
. (5.15)

where x(t) is the average of sequences or trajectories of length t. In case of Gaussian

diffusion, the two exponents satisfy the relation δ = H = 1/2 [53, 54].

5.2.3.2 Spectral Analysis

Random time series constitute deterministic and random components. The deterministic

component varies smoothly or periodically in time whereas the random part fluctuates

rapidly with time [30]. In general, a time series [30] of a random variable x(t) is written

as,

x(t) = y(t) + η(t), (5.16)

where y(t) and η(t) are deterministic and random components respectively. Suppose

that time series x(t) is constructed at M points over total time T , then we can define M

such that T = M∆t. The time window varies as: t = j∆, where j = 0, 1, 2, ....M . The

discrete Fourier transform technique [30, 55] decomposes the time series, Eq. (5.16),

into the sum of sinusoidal components,

xj =

M−1∑
j=0

Cje
2πijfj + ηj , (5.17)

where ηj is white noise and f denotes the frequency. In general, the coefficients Ck

are complex. In case of random time series, i.e., Eq. (5.17), Ck are random complex

numbers. A power spectral density Ps or a periodogram of given time series x is obtained

as,

Ps(fj) =
1

M
|Cj |2, (5.18)

or it can be also written as,

Ps(fj) =
1

M

∣∣∣∣∣∣
M−1∑
j=0

xje
2πijωj

∣∣∣∣∣∣
2

. (5.19)
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This is normalised power spectral density [30, 55]. Furthermore, power spectral density

is written as a function of frequency f ,

Ps(f) =
1

fα
, (5.20)

where α lies between 0 and 3. In case of white noise, the power spectrum has constant

value, i.e. Ps(f) = constant and shows no correlation in time [30, 55]. Moreover, the

observations of 1/f fluctuations in the system imply existence of self-organized criticality

[31]. In addition, these fluctuations have been observed in physical [56, 57], biological

[58, 59], and economical [60] processes.

5.3 Analysis of Eye Movements

In this section, we give the temporal and spatial analyses of the eye movement data.

5.3.1 Details of Data Collection

The experiments were carried on 36 illiterate and 32 literate subjects, selected from the

Hindi-speaking population of Allahabad [12, 27]. The literate and illiterate categories

were made using mean years of formal education of people. The mean years of formal

education were 15 and 4 years for literate and illiterate peoples respectively. The spoken

sentences were neutral, and the target word came after about 16 seconds on average

from the sentence onset (see Fig. 5.1). The fixation and saccadic eye movement data

were collected and recorded with an SMI High Speed eye tracker running at a sampling

rate of 1250 Hz; this recovered the X and Y coordinates of a gaze with an accuracy of

0.01◦, and the resulting data were binned using MATLAB. This was done for 35 trials

per subject. Saccades were identified following a velocity-based algorithm [21] when

the movement of the eye was greater than 30◦/sec in any direction from its current

position. Fixations were identified with the stationarity of eye motion in any location,

for a minimum duration of 80 ms occurring between two saccades.

5.3.2 Temporal Analysis

Now, we give the detailed analysis of saccade and fixation times. We mainly consider

eye gaze points of target, competitor, and distractors objects. For each of the subjects,

the data is manually scanned, and probability distributions are computed to show the
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frequencies of fixation and saccade durations. Figure’s 5.2 and 5.3 show the distributions

of fixation and saccade times for literate and illiterate subjects.
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Figure 5.2: (I): Histograms of fixation time tf for four sample literate subjects, show

peaks. (II): Histograms of fixation time tf for four sample illiterate subjects. The

distributions do not have a peak. The legend indicates the correspondence between the

symbol and the type/serial number of the subject.

The significant difference between two types appears in the distribution of fixations. The

fixation times of literate subjects have skewed distributions which indicate the presence

of a characteristic time scale. The typical distributions in Fig. 5.2I with peaks that

occur in the range 190− 260 ms, and long complex tails, typify the fixation distribution

for literate subjects. This suggests the presence of a typical attention-related peak when

the subjects find meaningful correlations between a target image and the spoken word.

For the illiterate subjects, the distributions are less uniform. Unexpectedly some of them

are rather similar to the skew 1-peaked distribution found in the literate case; most of

them seem to exhibit power-laws, with no characteristic timescales, so that no fixation

peaks are manifested [Fig. 5.2II]. Table 5.1 depicts the fixation times for both subjects.

Overall, we found that saccades appear to follow inverse power-law distributions [Fig.

5.3I], P (ts) = ts
−β, where ts is saccadic time. The values of the exponent β lie between

1 and 2. Averaging over all the subjects, we obtained the exponent β = −1.77 ± 0.23,

for both literate and illiterate subjects, with only about four of the illiterate subjects

and one of the literate subjects showing significant deviations from such behavior. We



Chapter 5. Human Cognition through Eye Movements 77

observed however, that low literate subjects tended to spend relatively larger amounts

of time on saccadic movements, even when power-law behavior was apparent overall.

Table 5.1: Fixation time (in ms) distributions of 32 literates and 36 illiterates. Note

that all 32 literates had fixation peaks, while only 5 out of 36 literates manifested

fixation peaks.

Literacy level Serial No. Peak value

Literates 6,9,21,22,25,29,30 194.88± 12.92

10,11,19,26,28,31 221.36± 7.12

1,3,4,7,8,14,24 234.29± 3.05

2,15,16,18,20,23,32 243.84± 2.62

5,12,13,17,27 259.67± 9.66

Illiterates 5,4,10,14,23 247± 23.57

Others did not fixate
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Figure 5.3: (I): The log of the probability distribution P (ts) of saccadic time ts vs.

ln(ts) for four literates, show power-law. (II): The log of the probability distribution

P (ts) of saccadic time ts vs. ln(ts) for four illiterates, where no power-law is dis-

cernible. No lines have been fitted to the data for this reason. The legend indicates the

correspondence between the symbol and the type/serial number of the subject.
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The large saccadic times of illiterate subjects imply the poorer cognitive processing,

searching extensively and rarely fixating on their targets. Some of the distributions

for such extreme illiterate cases are shown in Fig. 5.3II. The positions of the fixation

(attentional) peak are absent, and no convincing lines are fitted to the data for the

saccades either.

5.3.3 Anomalous Diffusion in Eye Movements

In this section, we discuss the diffusive properties of the time series of eye movements.

5.3.3.1 Spatial Analysis of Saccades

Our particular interest is in the construction and analysis of time series of eye movements.

In this study, when subjects perform a task, the eye tracker camera records the sequences

of fixation and saccade points. These alternate sequences are measured over 35 trials

for 32 literate subjects and 36 illiterate subjects. Figure 5.4 shows a typical time series

of Euclidean distances between saccade points spanned over total time duration. This

time series is our basic unit for further investigations.
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Figure 5.4: A typical time series of Euclidean distances of saccades.

We carefully examine the scaling property of time series of saccades. One possible way

is to construct the probability distribution function of saccade, and accordingly, identify
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the scaling form. Moreover, the values of the scaling exponents determine the type of

the diffusion process. The ordinary and anomalous diffusion processes can be identified

by the application of scaling methods to time series of saccades. Two scaling methods,

standard deviation analysis (SDA) [54] and diffusion entropy analysis (DEA) [53, 62] are

used to compute diffusion (δ) and Hurst H exponents. We also provide spectral analysis

and distributions of Euclidean distances of saccades.

5.3.3.2 Estimation of Diffusion and Hurst Exponents

The two scaling exponents, diffusion δ and Hurst H, characterize the dynamics of sac-

cades. We analyze the spatial positions of the gazes of eight representative subjects,

spanning literate and illiterate, with an aim to determining the nature of saccadic dy-

namics. For each subject, time series ds(t) is constructed from the Euclidean distances

corresponding to the gaze coordinates at times t = 1, 2, ...,M during a given saccade.

Subtrajectories Zi(n) [53, 61] starting in the ith time bin and spanning a time duration

n are then computed using the relation,

Zi(t) =

n∑
j=1

[ds(i+ j − 1)]. (5.21)

The subtrajectories Zi(n) are thus the cumulative Euclidean distances ds spanned in

time windows of length [i, i+ 1] during saccades. These subtrajectories are the basis for

both, DEA [53, 62] and SDA [54].

Scafeta et al., [53, 62] have developed an analysis based on entropies of diffusion pro-

cesses. This method, diffusion entropy analysis (DEA) computes Shannon entropies of

trajectories of time series over variable time windows. The details of DEA are given in

section 5.2.3.1. The exponent δ is estimated using the diffusion entropy analysis (DEA)

[53, 62]; this involves constructing the histograms of the end points of the subtrajectories

Zi(n). If pi(n) is the probability that an end point of a subtrajectory Z(n) of duration

n lies in the ith time bin, the Shannon entropy for a time duration n is expressible as:

S(n) = −
M−m∑
i=1

pi(n) ln(pi(n)). (5.22)

This further reduces to,

S(n) = As + δ ln(n), (5.23)
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where As is constant. The exponent δ is obtained as:

S(n)

ln(n)
∝ δ. (5.24)

Figure 5.5 shows the results of DEA for eight representative literate and illiterate sub-

jects. The fitting functions of straight lines have the form, S(n) = As + δ ln(n), due to

linear-log representation. The values of As lie between 1 and 3. The slope of the fitted

lines gives the values of the diffusion exponent δ for eight representative subjects.
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Figure 5.5: Plots of Shannon entropies S(n) vs. ln(n) for saccade time series cor-
responding to eight representative literate (I) and illiterate (II) subjects. The legend
indicates the correspondence between the symbol and the type/serial number of the

subject. The exponent’s δ is found from the slopes and tabulated in Table 5.2.

Now, we present the estimation of Hurst exponent H using SDA. The standard deviation

analysis (SDA) is a traditional method used in variance estimation [54]. In our case,

this method estimates the variance or the standard deviation of subtrajectories at each

discrete time. We compute the standard deviation D(n) of the subtrajectories Zi(n) for

time t = 1, 2, ...,M during a given saccade. We use following formula,

D(n) =

√∑M−n
i=1 [Zi(n)− Z(n)]2

M − n− 1
, (5.25)

where Z(n) is the average of subtrajectories of length n. The Hurst exponent H is

obtained as:

D(n) ∼ nH . (5.26)
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Figure 5.6: Plots of ln(D(n)) vs. ln(n) for subtrajectories Z(n) corresponding to eight
literate (I) and illiterate (II) representative subjects during saccadic eye movement.
The exponent’s H is found from the slopes. The legend indicates the correspondence

between the symbol and the type/serial number of the subject.

Figure 5.6 shows the results of SDA for eight representative literate and illiterate sub-

jects. The slope of the line ln(D(n)) = C + H ln(n) gives the Hurst exponent H. The

values of constant C lie in the interval 4 < C < 6.

Table 5.2: The values of Hurst H and diffusion δ exponents for eight sample literate
and illiterate subjects whose data is plotted in Figs. 5.5 and 5.6.

Literacy Level Serial No. H δ
Literates 10 0.92 0.87

21 0.96 0.90
25 0.97 0.92
31 0.98 0.91

Illiterates 11 0.97 0.90
14 0.98 0.89
24 0.87 0.81
32 0.98 0.92

Table 5.2 shows the values of exponents H and δ. The values of these exponents lie

between 1/2 and 1. The values of H (H > 0.5 indicates superdiffusion) are obtained

and the fact that δ 6= H across Table 5.2 both suggest that our data are consistent

with Levy processes. The findings of Van Loon et al., [63], who found non-Gaussian

behavior for the timing of sequence for the ‘later’ saccades in a multiple-fixation search
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like our own, buttress our conclusions. They are in contrast to the findings of Shelhamer

[64], where fractional Brownian motion was observed in the predictive eye movements

of saccades; this is probably because, in our case, the experimental paradigm is not

predictive at all, and subjects are not aware that they are performing a task.

5.3.3.3 Spectral Analysis and Distributions of Euclidean Distances

In this section, we provide spectral analysis and probability distribution of Euclidean

distances of saccade. Our aim is to identify the 1/fα behavior via power spectral density.

The power spectrum of the saccade time series ds(t) is obtained using discrete Fourier

transform technique (DFT) [55].
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Figure 5.7: Plots of the power spectrum Ps(f) against frequency f for eight represen-
tative literate (I) and illiterate (II) subjects. The legend indicates the correspondence
between the symbol and the type/serial number of the subject. The exponent α is

found from the slope of fitted line (see Table 5.3).

The power spectral density of ds(t) is written as:

Ps(fj) =
1

M

∣∣∣∣∣∣
M−1∑
j=0

dsje
2πijfj/M

∣∣∣∣∣∣
2

. (5.27)

Power spectral densities of time series for eight representative literate and illiterate

subjects are shown in Fig. 5.7. The slope of the straight line in log-log representation

gives value of the exponent α. The values of α lie between 1 and 2 (Table 5.3). This

result indicates the nontrivial temporal correlations of anomalous diffusion.
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Figure 5.8: Plots of ln(P (ds(t))) vs. ln(ds(t)) for sample literates ((a) to (d)) and
illiterates ((e) to (h)) respectively. The legend indicates the correspondence between
the symbol and the type/serial number of the subject. The exponent κ is obtained

from slope of line (see Table 5.3).

Table 5.3: The values of α and κ exponents for the sample literate and illiterate
subjects whose data are plotted in Fig. 5.7 and Fig. 5.8.

Literacy Level Serial No. α κ

Literates 10 1.46 1.85
21 1.79 2.75
25 1.94 1.96
31 1.87 2.35

Illiterates 11 1.71 2.81
14 1.78 2.17
24 1.13 2.14
32 1.87 1.35

The probabilities of Euclidean distances of saccades are computed. The probability

distribution P (ds(t)) of Euclidean distances of saccades show the inverse power-law,

P (ds(t)) = ds(t)−κ, where 1 < κ < 3. Figure 5.8 displays the probability distributions

of Euclidean distances. Our findings suggest that the Euclidean distances of saccades

exhibit Levy distribution. The values of exponent κ for eight representative subjects are

given in Table 5.3.
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5.4 Conclusions

We have described temporal and spatial analyses of eye movements. Our most striking

observation here is that there is a clear separation of behavior in visual processing, via the

distributions of saccadic and fixation times; the former shows a scale-invariance, while

the latter does not. In general, the effect of literacy shows up only in the fixation dy-

namics, where literate subjects typically show the presence of an attentional timescale of

around 220 ms on an average. We have analyzed the time series of Euclidean distances

of saccades. The scaling exponents, H and δ are estimated using standard deviation

analysis and diffusion entropy analysis. Our results support the Levy-like dynamics of

saccades, analogous to animal foraging where animals are typically unaware of where

next they will find food. As expected, this is very similar to what is seen in our case:

subjects are unaware of the locations of their next targets, and accordingly, the Hurst

exponent H takes on values that are much greater than 0.5. Our findings would seem to

suggest that saccadic eye movements probably obey fractional Levy dynamics, irrespec-

tive of the literacy level of the subject. Other possible confirmations of superdiffusive

dynamics come from the plots of Fourier power spectrum Ps(f) ∼ (1/fα) against f and

distributions, P (ds(t)) = ds(t)−κ, of Euclidean distances of saccades. The values of

these two exponents α (1 < α < 2) and κ (1 < κ < 3) attribute to anomalous dynamics.
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Chapter 6

Model Selection and Simulation

of Levy Random Walk

This chapter comprises two sections. The first section focuses on the statistics of model

selection and information theoretical methods. We describe the simulation of Levy

random walks in second section.

6.1 Statistics of Model Selection

Data are the values of measurements of a random variable in an experiment. A mean-

ingful empirical data analysis considers model construction and selection, estimation of

parameter for the unknown population of data. To make valid inferences, a model se-

lection is an integral part of data analysis. Moreover, information theory and statistics

[1] provide methods of selection for the best approximating model for the data. The

information theoretical techniques are different from those of regression analysis [2] and

hypothesis testing [3]. The Akaike [4] and Bayesian [5] information criteria not only

select the best approximating model but also make ranking and scaling of other models.

6.1.1 Basics of Likelihood Theory

Likelihood theory discusses model specification, estimation of parameters and precision

of measurements [6]. This theory has several similarities with traditional least square

theory [7]. The likelihood method begins with construction of probability models for

a given data and parameters, and accordingly, selects the best approximate model. In

89
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contrast, least square methods are simple and easily compute the fitting parameters

of linear and nonlinear models by minimizing sum of the squares of the residuals [7].

The least square frameworks are viewed as an inefficient methods to estimate of second

moment (variance) of models with non-Gaussian residuals [8, 9]. On the other hand,

likelihood theory follows an iterative procedure to compute the parameters of linear and

nonlinear models with non-Gaussian residuals [10].

Likelihood is a function of unknown parameters and denoted as: L(θ|data,model). The

function L gives the ‘likelihood’ of unknown parameters θ of an approximating model,

for the given empirical data [11]. It constructs joint distribution of data; for example,

in case of n measurements of x, the likelihood function [11] is given as: L(θ|x,model) =
n∏
i=1

P (xi). Further, likelihood theory iteratively compute the most likely one as the best

estimate of unknown parameters. The function L attains maximum, i.e. ∂L
∂θ = 0, at

the best estimate value of parameter [11]. Moreover, the function L and its natural

logarithm lnL have maximum at same point. Alternatively, the maximum likelihood

estimate (MLE) is achieved at a point where the log-likelihood function has its maximum,

∂(lnL)
∂θ = 0 [11]. This maximization of log-likelihood function with respect to parameters

gives the best fit of a probability model to the data. In case of large samples and

asymptotic analysis, the MLE of probability models gives numerically optimal values of

parameters [12, 13]. Furthermore, the likelihood and information theories jointly provide

the basis for selection of the best probability model and its parameters. In next sections,

we explain the maximum likelihood estimation of four candidate probability models and

the information criterion.

6.1.2 Maximum Likelihood Estimation of Candidate Models

In this section, we present theoretical ideas of MLE of candidate probability models that

are used for saccade times. This method starts with initial guesses of parameters and

then it performs an iterative procedure on joint probability distribution of data [11].

The joint distribution of data x is given as,

F (x) =
n∏
i=1

P (xi). (6.1)

Here, we provide the MLE of four candidate probability models: exponential, log-normal,

gamma and power-law.
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• Exponential Distribution:

The probability density function of exponential distribution [14] is given as:

Pe(x) = λ ∗ exp(−λx). (6.2)

The likelihood function is written as:

Le(x|λ) =
n∏
i=1

Pe(xi),

= λn exp

(
−λ

n∑
i=1

xi

)
. (6.3)

Hence, the log-likelihood becomes,

lnL = n lnλ− λ
n∑
i=1

xi. (6.4)

Equating ∂ lnL
∂λ to zero, the maximum likelihood estimate of the parameter λ is

obtained as,

λ =
n
n∑
i=1

xi

. (6.5)

• Log-normal Distribution

The probability density function of log-normal distribution [15] with mean υ and

variance σ is written as:

Pl(x) =
1

xσ
√

2π
exp

(
−(lnx− υ)2

√
2σ2

)
. (6.6)

The likelihood function becomes,

Ll(x|υ, σ) =

n∏
i=1

Pl(xi),

=
1√

(2πσ2)n

n∏
i=1

1

xi
exp

(
n∑
i=1

−(lnxi − υ)2

√
2σ2

)
. (6.7)
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The log-likelihood becomes,

lnL = −n
2

ln(2πσ2)−
n∑
i=1

ln(xi)−

n∑
i=1

ln(xi)
2

2σ2
+

n∑
i=1

υ ln(xi)

σ2
− nυ2

2σ2
. (6.8)

Setting ∂ lnL
∂υ = 0, and ∂ lnL

∂σ = 0, we get maximum likelihood estimate of υ and σ2,

υ =

n∑
i=1

ln(xi)

n
, (6.9)

σ2 =

n∑
i=1

(ln(xi)− υ)2

n
. (6.10)

• Gamma Distribution

The probability density function of Gamma distribution [16] with shape parameter

k and scale parameter b is given as:

Pg(x) =
xk−1 exp(−xb )

bkΓ(k)
. (6.11)

The likelihood function becomes,

Lg(x|k, b) =

n∏
i=1

Pg(xi)

=

n∏
i=1

(xi)
k−1 exp(−xib )

bkΓ(k)
. (6.12)

The log-likelihood function is written as:

lnL = (k − 1)
n∑
i=1

lnxi − n ln Γ(k)− nk ln b− 1

b

n∑
i=1

xi (6.13)

Setting ∂ lnL
∂b equal to zero yields the maximum likelihood estimate of the b,

b =

n∑
i=1

xi

nk
. (6.14)
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Substituting b (Eq. 6.14) into Eq. 6.13 and setting ∂ lnL
∂k = 0, we get,

ln(k)− ψ(k) = ln

(
1

n

n∑
i=1

xi

)
− 1

n

n∑
i=1

ln(xi), (6.15)

where ψ(k) = Γ
′
(k)

Γ(k) is the digamma function.

• Power-law Distribution

Now, we consider MLE of power-law with its parameter β
′
. The pdf of power-law

distribution [17, 18] is written as:

Pp(t) = Cx−β
′

=
β
′ − 1

xmin

(
x

xmin

)−β′
. (6.16)

The likelihood function for the data x becomes,

Lp(x|β
′
) =

n∏
i=1

Pp(xi)

=

n∏
i=1

β
′ − 1

xmin

(
xi
xmin

)−β′
. (6.17)

The log-likelihood function is obtained as:

lnL =

n∑
i=1

[
ln(β

′ − 1)− ln(xmin)− β′ ln
(

xi
xmin

)]
. (6.18)

Setting ∂ lnL
∂β′

= 0, yields the maximum likelihood estimate of the β
′
,

β
′

= 1 + n

[∑
i

ln

(
xi
xmin

)]−1

. (6.19)

6.1.3 Akaike Information Criterion

This section focuses on the theoretical background of information criterion. Akaike in-

troduced a relationship between information theory and maximum likelihood function

[4]. He connected Kullback-Leibler (KL) distance to Fisher’s log-likelihood function.

The KL distance is the statistical distance between probability distributions. For exam-

ple, for two continuous distributions h and g, the KL distance [1, 4, 11] or information
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is written as:

I(h, g) =

∫
h(x) log

(
h(x)

g(x|θ)

)
dx, (6.20)

where θ are parameters of ‘g’ model. The function I(h, g) in Eq. (6.20) gives the

information lost when model g is used to approximate h. In discrete case, the information

loss can be expressible as:

I(h, g) =
n∑
i=1

pi log

(
pi
qi

)
, (6.21)

where pi are probabilities of ith outcome and qi constitute the probabilities of approxi-

mating distribution. These probabilities satisfy the axioms, 0 ≤ pi ≤ 1, 0 ≤ qi ≤ 1 and
n∑
i=1

pi =
n∑
i=1

qi = 1.

Equation 6.20 can be written as:

I(h, g) =

∫
h(x) log(h(x))−

∫
h(x) log(g(x|θ)). (6.22)

This is viewed as differences between two expectations [4, 11],

I(h, g) = Eh[log(h(x))]− Eh[log(g(x|θ))], (6.23)

where, Eh denotes the expectation with respect to h. The first expectation, Eh[log(h(x))]

is constant and depends only on the unknown distribution h [1, 11]. Therefore, I(h, g)

becomes as,

I(h, g) = J − Eh[log(g(x|θ))], (6.24)

where J is constant. Akaike [19, 20] considered the expectation Eθ[I(h, (g(x|θ))] and

simplified the Eq. (6.24) into a simple relation,

AIC = −2 log(L(θ|x)) + J. (6.25)

Here, AIC denotes the Akaike information criterion and J is number of parameters of

a probability model. Numerical optimization techniques [21, 22] estimate the value of

log-likelihood function log(L(θ|x)). Further, in case of a small sample size [23, 24], the

AIC is further modified to,

AICc = AIC +
2J(J + 1)

n− J − 1
, (6.26)
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where n is sample size. The AIC difference [11, 19, 20], Di of the ith model of a given

set is obtained as:

Di = AICi −AICmin, (6.27)

where AICmin is the minimum value of AIC of a model in a given set. The differences

Di are used to estimate the relative likelihood of probability models [11, 19, 20]. The

relative likelihood Fi of ith model in a set for the given data is given as:

Fi ∝ exp

(
−Di

2

)
. (6.28)

The relative Akaike weight [11, 19, 20] ωi of ith model is calculated as:

ωi =
exp

(
−Di

2

)
m∑
i=1

[
exp

(−Dm
2

)] , (6.29)

where summation in the denominator taken over total m models considered.

6.2 Likelihood and Information Criteria for Saccade

In chapter 5, we have shown that saccade time follows inverse power-law distribution. We

use the likelihood and information theories to prove our claim of inverse power-law. We

consider four candidate probability models for saccade data: exponential, log-normal,

gamma and power-law.

Table 6.1: The values of log-likelihood, Akaike information (AIC), and Akaike weights

for exponential, log-normal, gamma and power-law distributions.

Candidate Model No. of parameters Log-likelihood AIC Akaike weight (ω)

Exponential 1 -507.263 1015.526 0

Log-normal 2 -488.456 978.912 0

Gamma 2 -505.876 1013.752 0

Power-law 1 -472.791 946.582 1
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Our MATLAB algorithm comprises two steps. First, we calculate the probabilities of

saccade times. Secondly, we fit the exponential, log-normal, gamma and power-law

distributions to the data. The MATLAB code gives the values of the log-likelihood and

parameters of four candidate models. We then calculate Akaike information criterion

(AIC), differences, and Akaike weights using Eqs. 6.25, 6.27 and 6.29 respectively.

Table 6.1 shows the values of log-likelihood, AIC and Akaike weights for four candidate

probability models. The low value of Akaike information in Table 6.1 indicates that

the power-law fits well to the saccade data. In addition, the power-law distribution has

higher values of log-likelihood and Akaike weight than the exponential, log-normal and

gamma distributions. This predominance of a power-law distribution lends to support

our claims of scale invariance of the saccades. The cumulative distributions of saccade

time data of a sample literate subject and the four candidate models are shown in Fig.

6.1.
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Figure 6.1: Cumulative distributions of saccade times (black solid line) for a sam-

ple literate subject, exponential (cyan solid line), log-normal (blue solid line), gamma

(magenta solid line) and power-law (red solid line) distributions.

6.3 Levy Random Walk Model

Our time series analysis of Euclidean distances saccades confirms that their dynamics

are Levy-like. Levy motions such as Levy flights and walks are found advantageous in

random searching behavior of animals when searchers do not have prior knowledge of

target locations [25, 26]. The advantage of Levy random walks is that they assign finite
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velocity to random walker [27]. We assume that the movements of random walkers are

analogous to eye movements. The subjects move their eyes rapidly in random direction

on the computer screen during linguistic task. In this case, longer jumps are frequently

observed in patterns of eye movements [28]. Moreover, saccade can take small and long

jumps with finite velocity. Figure 6.2 shows typical patterns of gaze points of the eye

movements. Note that in our study, subjects are under no instrumental control and

carefully unaware that they are performing a set of task.
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Figure 6.2: Plots of eye movement locations of literate and illiterate subjects for single
((a) and (c)) and double ((b) and (d)) trials. The legend indicates the correspondence

between the symbol and the type/serial number of the subject.

We carry out simulation of two-dimensional Levy random walk. A walker choose di-

rection at random and travel a distance l in XY plane, according to transformation

l = r−1/µ−1
21/µ−1

, where r ∈ [0,1] [26]. The exponent µ is the Levy index which varies from 1

to 3. We consider four cases: µ = 1.2, 1.4, 1.6 and 1.8. For each case, the positions (x, y)

of the random walkers are recorded over 105 steps. Times series of Euclidean distances

of Levy walks are constructed. Figure 6.3 show a typical Levy random walk and its time

series of Euclidean distances.

Our interest is to study diffusive behavior of Levy random walks. We perform diffusion

entropy [28, 29, 30] and standard deviation [28, 31] analyses on the Levy walker time
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Figure 6.3: (I): A typical Levy random walk of 105 steps for µ = 1.2. The inset shows
a walk of 100 steps (II): A typical time series of Euclidean distances of two dimensional

Levy walker for 105 steps.

series, and accordingly, estimate Hurst (H) and diffusion (δ) exponents. The subtrajec-

tories of time series dsl of Levy walker are constructed as:

Zi(t) =

n∑
j=1

[dsl(i+ j − 1)], (6.30)

where n is the length of subtrajectory. Though the details of SDA and DEA are explained

in chapter 5, we reproduce the two main equations here :

Sl(n) = Al + δ ln(n). (6.31)

Thus, DEA gives diffusion exponent δ: Sl(n)
ln(n) ∝ δ.

The standard deviations of subtrajectories of Levy walker time series is estimated as:

Dl(n) =

√∑M−n
i=1 [Zi(n)− Z(n)]2

M − n− 1
. (6.32)

The exponent H is obtained using the relation: Dl(n) ∼ nH . Figure 6.4 and 6.5 show

the results of DEA and SDA for Levy walker time series respectively. The values of the

Hurst H, and diffusion δ exponents for Levy walker time series are shown in Table 6.2.

The values of H and δ suggest the superdiffusive dynamics of Levy walks.
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Figure 6.4: Plots of Shannon entropies S(n) vs. ln(n) for saccades corresponding to
four Levy walker time series.
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Figure 6.5: Plots of ln(Dl(n)) vs. ln(n) for sub-trajectories Z(n) corresponding to
four Levy walker time series.
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Table 6.2: The values of Levy index µ, Hurst H, and diffusion δ exponents for Levy

walker time series

µ H δ

1.2 0.68 0.73

1.4 0.60 0.75

1.6 0.75 0.80

1.8 0.82 0.77

6.4 Conclusions

This chapter has explained the application of information theoretical methods to empir-

ical data of saccades and simulations of Levy random walk. The power-law distribution

of saccade times for literate subject has minimum Akaike information, maximum Akaike

weight and log-likelihood values than other probability models. These results reveal that

inverse power-law is the best approximate model for saccades. Our results of SDA and

DEA for Levy walker time series substantially indicate the superdiffusive dynamics of

a random walker. Our findings further ensure that ordinary Levy walks can model the

visual searching behavior.
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Chapter 7

Summary and Future

Perspectives

This thesis has presented the studies of spontaneous crystallization of granular spheres

and spatio-temporal dynamics of human eye movements. Many new results have been

obtained on both studies. In the following, first, I summarize all the major results of

both studies, and then discuss perspectives of the future work.

7.1 Summary

Chapter 1 starts with a general introduction and describe the aims and outline of the

thesis.

Chapter 2 provides a survey of the literature on statics and dynamics of granular

materials, and human cognition through eye movements.

Chapter 3 comprises the first part of thesis, study of the spontaneous crystallization

of granular spheres. We have given details of the hybrid Monte Carlo simulation of

monodisperse spheres. This algorithm presents a realistic view of cooperative dynamics

of granular spheres under shaking. In addition, it also provides a coherent picture of

the development of crystalline structures. We have described systematic way of charac-

terization of spontaneous crystalline transitions of spheres for nine shaking amplitudes.

It has been shown that radial distribution function and global bond orientational order

103



Chapter 7. Summary and Future Perspectives. 104

parameter are useful techniques to identify the spatial orders at global level for all pack-

ing densities. The local order analysis gives insight into the developments of fcc and hcp

sphere-clusters at various densities. Both the global and local order metrics change at

packing densities of 0.62, 0.64, and 0.68. Importantly, the results of both analyses imply

that shaking plays a vital role in the development of crystalline orders. Taken together,

the ordering is incomplete at low shaking amplitudes; it leads to single fcc cluster for

intermediate amplitudes and the coexistence of fcc and hcp is seen for higher shaking

amplitudes.

Chapter 4 gives an introduction and application of Delaunay tessellations. Delau-

nay tessellation, a geometric method, has been applied to sphere packings of different

densities. This method successfully computes the geometrical parameters such as vol-

ume, dihedral angle and length of Delaunay simplex. The volumes of tetrahedra follow

two parameter gamma distributions. We have applied statistical mechanical methods

to sphere packings, and accordingly, estimated the fluctuations and entropies of vol-

umes. The volume fluctuations and entropies show drastic change at packing densities

of 0.62, 0.64 and 0.68. We have calculated dihedral angles, length measures and the

percentage of Delaunay tetrahedra. The results of dihedral angle, tetrahedricity, and

quartoctahedricity distributions indicate that growth of regular or quasiregular tetrahe-

dra increases with density. In case of intermediate and higher amplitudes, at maximum

density of φ ∼ 0.72, the percentage of quasiregular tetrahedra reaches to a maximum

of 31% and the peak of distributions of dihedral angle appears at 70◦. Similarly, at

maximum density of φ ∼ 0.72, the minima’s of tetrahedricity T and quartoctahedricity

Q are seen at 0.018 and 0.013 respectively, for intermediate and higher amplitudes.

Chapter 5 provides the spatio-temporal analysis of human eye movements. We explain

the methodology of eye movements and experimental paradigm of linguistic study. We

have analyzed temporal and spatial data of eye movements. The probability distribu-

tions of saccade and fixation times show a clear separation between these movements.

We have found that saccades follow a power-law distribution whereas fixations show a

characteristic timescale of 220 ms on an average for literate subjects. Interestingly, the

temporal distributions of few illiterate subjects also exhibit similar behavior to those of

the literate subjects. To examine the spatial dynamics of saccade, we have applied the

scaling methods of standard deviation and entropy to the time series of Euclidean dis-

tances of saccades. The scaling exponents, H and δ, are computed using SDA and DEA
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respectively. The values of Hurst and diffusion exponent in the interval 1/2 < H, δ < 1

indicate the Levy like anomalous diffusion of saccades. Also, the probabilities of Eu-

clidean distances and power spectral density of saccade times series are computed. These

results also attribute to anomalous diffusion of Levy type.

In Chapter 6, we have presented a basis for model selection and simulation of two-

dimensional Levy random walk. The statistical techniques of maximum likelihood and

Akaike information are found useful to select the best approximate model for saccade

times. We have calculated the log-likelihood, Akaike information and weights for four

candidate probability models. Our findings suggest that the power-law distribution

shows the best fit to saccade data. We have presented the simulation of two-dimensional

Levy random walks. The results of standard deviation, and diffusion entropy analyses

of the time series of Levy walk show the superdiffusive dynamics of walker.

7.2 Future Perspectives

A careful investigation on the emergence of single fcc structure should be done. We

would like to study the development of simple cubic, body-centered cubic structures

along with fcc and hcp. The angular and length measures of simplices should be used

for the identification of different crystalline structures. The bond order parameters

and geometrical quantities change at packing densities of 0.64 and 0.68, which deserves

further investigation.

The spatio-temporal analysis of eye movement data and the simulation of Levy random

walk have been given in chapter 5 and 6 respecively. It is important to compute the

velocity correlation function of saccades. This may provide clear understanding of sac-

cade dynamics. It is well known that fractional Brownian and fractional Levy motions

are also efficient techniques for the modelling of superdiffusive behavior. We would like

extend the simulation from ordinary Levy walk to fractional Levy motion.
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